Skip to main content
Log in

Drivers of compositional dissimilarity for native and alien birds: the relative roles of human activity and environmental suitability

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

We assessed the relative importance of human activity and environmental suitability as drivers of compositional dissimilarity of alien birds for 65 of the most populous cities of the Iberian Peninsula. We examined how these drivers relate to Zeta diversity (ζ) for alien Passeriformes and Psittaciformes. We performed the analysis using multiple orders of ζ, which provides insight on the role played by rare and common species in determining levels of dissimilarity. We also ran the analyses using the community of native Passeriformes as a phylogenetically close contrasting control. Our results showed that the proportion of urban area, a variable related to colonization and propagule pressure, had a strong influence on Psittaciformes but not on alien Passeriformes. This latter group showed to be primarily influenced by environmental factors, similarly to what was found for native Passeriformes. On other hand, human connectivity, as measured by distance through roads and railways seemed to play a significant role in shaping the compositional dissimilarity of alien Passeriformes, but not Psittaciformes. Regardless of the group analysed, the relative importance of the explanatory variables was similar for both rare and common species. Our findings highlight differences between the factors driving compositional dissimilarity for distinct groups of birds. While the emerging biogeography of Psittaciformes is mainly a reflection of distinctiveness in urban areas, alien Passeriformes are more strongly affected by the natural environment and thus their biogeography may increasingly resemble the one of their native counterparts.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abellán P, Carrete M, Anadón JD, Cardador L, Tella JL (2016) Non-random patterns and temporal trends (1912–2012) in the transport, introduction and establishment of exotic birds in Spain and Portugal. Divers Distrib 22:263–273

    Article  Google Scholar 

  • Abellán P, Tella JL, Carrete M, Cardador L, Anadón JD. 2017. Climate matching drives spread rate but not establishment success in recent unintentional bird introductions. In: Proceedings of the National Academy of Sciences: 201704815

  • Arnold GW, Weeldenburg JR (1990) Factors determining the number and species of birds in road verges in the wheatbelt of Western Australia. Biol Conserv 53:295–315

    Article  Google Scholar 

  • Ascensão F, Capinha C (2017) Aliens on the move: transportation networks and non-native species. In: Borda-de-Água L, Barrientos R, Beja P, Pereira HM (eds) Railway ecology. Springer, Berlin, pp 65–80

    Chapter  Google Scholar 

  • Baselga A (2010) Partitioning the turnover and nestedness components of beta diversity: partitioning beta diversity. Glob Ecol Biogeogr 19:134–143

    Article  Google Scholar 

  • Baselga A (2013) Multiple site dissimilarity quantifies compositional heterogeneity among several sites, while average pairwise dissimilarity may be misleading. Ecography 36:124–128

    Article  Google Scholar 

  • Baselga A, Jimenez-Valverde A, Niccolini G (2007) A multiple-site similarity measure independent of richness. Biol Lett 3:642–645

    Article  PubMed  PubMed Central  Google Scholar 

  • Bellard C, Cassey P, Blackburn TM (2016) Alien species as a driver of recent extinctions. Biol Lett 12:20150623

    Article  PubMed  PubMed Central  Google Scholar 

  • Blackburn TM, Pyšek P, Bacher S, Carlton JT, Duncan RP, Jarošík V, Wilson JRU, Richardson DM (2011) A proposed unified framework for biological invasions. Trends Ecol Evol 26:333–339

    Article  PubMed  Google Scholar 

  • Blackburn TM, Dyer E, Su S, Cassey P (2015) Long after the event, or four things we (should) know about bird invasions. J Ornithol 156:15–25

    Article  Google Scholar 

  • Burnham KP, Anderson DR (eds) (2004) Model selection and multimodel inference. Springer, New York, NY. http://link.springer.com/10.1007/b97636. Accessed 20 May 2019

    Google Scholar 

  • Capinha C, Essl F, Seebens H, Moser D, Pereira HM (2015) The dispersal of alien species redefines biogeography in the Anthropocene. Science 348:1248–1251

    Article  CAS  PubMed  Google Scholar 

  • Cardador L, Tella JL, Anadón JD, Abellán P, Carrete M (2019) The European trade ban on wild birds reduced invasion risks. Conserv Lett 12:e12631

    Article  Google Scholar 

  • Catry P, Costa H, Elias G, Matias R (2010) Aves de Portugal. Ornitologia do território continental. Assírio & Alvim, Lisboa

    Google Scholar 

  • Clavero M, García-Berthou E (2005) Invasive species are a leading cause of animal extinctions. Trends Ecol 20:110

    Article  Google Scholar 

  • Correia RA, Haskell WC, Gill JA, Palmeirim JM, Franco AMA (2015) Topography and aridity influence oak woodland bird assemblages in southern Europe. For Ecol Manag 354:97–103

    Article  Google Scholar 

  • D’Amico M, Rouco C, Russell JC, Román J, Revilla E (2013) Invaders on the road: synanthropic bird foraging along highways. Oecol Aust 17:86–95

    Article  Google Scholar 

  • Davis AY, Malas N, Minor ES (2014) Substitutable habitats? The biophysical and anthropogenic drivers of an exotic bird’s distribution. Biol Invasions 16:415–427

    Article  Google Scholar 

  • Dawson W et al (2017) Global hotspots and correlates of alien species richness across taxonomic groups. Nat Ecol Evol 1:0186

    Article  Google Scholar 

  • Dyer EE, Cassey P, Redding DW, Collen B, Franks V, Gaston KJ, Jones KE, Kark S, Orme CDL, Blackburn TM (2017) The global distribution and drivers of alien bird species richness. PLoS Biol 15:e2000942

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Equipa Atlas (2008) Atlas das aves nidificantes em Portugal (1999–2005). Page (Vários, ICNB, Alvim A&, editors). Instituto de Conservação da Natureza e Biodiversidade, Lisboa

  • Ferrier S, Manion G, Elith J, Richardson K (2007) Using generalized dissimilarity modelling to analyse and predict patterns of beta diversity in regional biodiversity assessment. Divers Distrib 13:252–264

    Article  Google Scholar 

  • Gaston KJ (2010) Valuing common species. Science 327:154–155

    Article  CAS  PubMed  Google Scholar 

  • Glen AS, Pech RP, Byrom AE (2013) Connectivity and invasive species management: towards an integrated landscape approach. Biol Invasions 15:2127–2138

    Article  Google Scholar 

  • Hui C, McGeoch MA (2014) Zeta diversity as a concept and metric that unifies incidence-based biodiversity patterns. The American Naturalist, vol 184. University of Chicago Press, Chicago, pp 684–694

    Google Scholar 

  • Hui C, Richardson DM (2017) Invasion dynamics. Oxford University Press, Oxford

    Book  Google Scholar 

  • Hulme PE (2009) Trade, transport and trouble: managing invasive species pathways in an era of globalization. J Appl Ecol 46:10–18

    Article  Google Scholar 

  • IEET (2014) Inventario Español de Especies Terrestres. Ministerio de Agricultura y Pesca, Alimentaci on y Medio Ambiento. http://www.mapama.gob.es/es/biodiversidad/temas/inventarios-nacionales/inventario-especies-terrestres/inventario-nacional-de-biodiversidad/bdn-ieet-default.aspx. Accessed 20 Jul 2016

  • Latombe G, Hui C, McGeoch MA (2015) Beyond the continuum: a multi-dimensional phase space for neutral–niche community assembly. Proc R Soc B Biol Sci 282:20152417

    Article  Google Scholar 

  • Latombe G et al (2017a) A vision for global monitoring of biological invasions. Biol Conserv 213:295–308

    Article  Google Scholar 

  • Latombe G, Hui C, McGeoch MA (2017b) Multi-site generalised dissimilarity modelling: using zeta diversity to differentiate drivers of turnover in rare and widespread species. Methods Ecol Evol 8:431–442

    Article  Google Scholar 

  • Latombe G, McGeoch M, Nipperess D, Hui C. 2017c. Zetadiv: functions to compute compositional turnover using zeta diversity. R package version 1.0

  • Latombe G, Richardson DM, Pyšek P, Kučera T, Hui C. 2018. Drivers of species turnover vary with species commonness for native and alien plants with different residence times. Ecology. http://doi.wiley.com/10.1002/ecy.2528. Accessed 8 Oct 2018

  • Latombe G, Roura-Pascual N, Hui C (2019) Similar compositional turnover but distinct insular environmental and geographical drivers of native and exotic ants in two oceans. J Biogeogr 46:2299–2310

    Article  Google Scholar 

  • Lockwood JL, Cassey P, Blackburn T (2005) The role of propagule pressure in explaining species invasions. Trends Ecol Evol 20:223–228

    Article  PubMed  Google Scholar 

  • Lockwood JL, Cassey P, Blackburn TM (2009) The more you introduce the more you get: the role of colonization pressure and propagule pressure in invasion ecology. Divers Distrib 15:904–910

    Article  Google Scholar 

  • Loureiro A, Ferrand N, Carretero MA, Paulo OS (2008) Atlas dos Anfíbios e Répteis de Portugal. Page (Loureiro A, Ferrand N, Carretero MA, Paulo OS, editors)1a edição. Instituto de Conservação da Natureza e Biodiversidade, Lisboa

  • Low-Décarie E, Chivers C, Granados M (2014) Rising complexity and falling explanatory power in ecology. Front Ecol Environ 12:412–418

    Article  Google Scholar 

  • McKinney ML (2006) Urbanization as a major cause of biotic homogenization. Biol Conserv 127:247–260

    Article  Google Scholar 

  • McLean P, Gallien L, Wilson JRU, Gaertner M, Richardson DM (2017) Small urban centres as launching sites for plant invasions in natural areas: insights from South Africa. Biol Invasions 19:3541–3555

    Article  Google Scholar 

  • Minor ES, Appelt CW, Grabiner S, Ward L, Moreno A, Pruett-Jones S (2012) Distribution of exotic monk parakeets across an urban landscape. Urban Ecosyst 15:979–991

    Article  Google Scholar 

  • Muirhead JR, Leung B, van Overdijk C, Kelly DW, Nandakumar K, Marchant KR, MacIsaac HJ (2006) Modelling local and long-distance dispersal of invasive emerald ash borer Agrilus planipennis (Coleoptera) in North America. Divers Distrib 12:71–79

    Article  Google Scholar 

  • Olson DM, Dinerstein E, Wikramanayake ED, Burgess ND, Powell GV, Underwood EC, D’amico JA, Itoua I, Strand HE, Morrison JC (2001) Terrestrial ecoregions of the world: a new map of life on EarthA new global map of terrestrial ecoregions provides an innovative tool for conserving biodiversity. Bioscience 51:933–938

    Article  Google Scholar 

  • QGIS Development team (2018) QGIS geographic information system. Open Source Geospatial Foundation Project. http://qgis.osgeo.org. QGIS Development Team

  • Ramsay JO (1988) Monotone regression splines in action. Stat Sci 3:425–441

    Google Scholar 

  • R-Core-Team. 2017. R: A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria. https://www.R-project.org/

  • Redding DW, Pigot AL, Dyer EE, Şekercioğlu ÇH, Kark S, Blackburn TM (2019) Location-level processes drive the establishment of alien bird populations worldwide. Nature 571:103–106

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reino L, Figueira R, Beja P, Araújo MB, Capinha C, Strubbe D (2017) Networks of global bird invasion altered by regional trade ban. Sci Adv 3:e1700783

    Article  PubMed  PubMed Central  Google Scholar 

  • Salomon Cavin J, Kull CA (2017) Invasion ecology goes to town: from disdain to sympathy. Biol Invasions 19:3471–3487

    Article  Google Scholar 

  • Schlaepfer MA, Sax DF, Olden JD (2011) The potential conservation value of non-native species: conservation value of non-native species. Conserv Biol 25:428–437

    Article  PubMed  Google Scholar 

  • Seebens H et al (2017) No saturation in the accumulation of alien species worldwide. Nat Commun 8:14435

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Simberloff D et al (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66

    Article  PubMed  Google Scholar 

  • Socolar JB, Gilroy JJ, Kunin WE, Edwards DP (2016) How should beta-diversity inform biodiversity conservation? Trends Ecol Evol 31:67–80

    Article  PubMed  Google Scholar 

  • Sorte FAL et al (2014) Beta diversity of urban floras among European and non-European cities. Glob Ecol Biogeogr 23:769–779

    Article  Google Scholar 

  • Spear D, Foxcroft LC, Bezuidenhout H, McGeoch MA (2013) Human population density explains alien species richness in protected areas. Biol Conserv 159:137–147

    Article  Google Scholar 

  • Suarez AV, Holway DA, Case TJ (2001) Patterns of spread in biological invasions dominated by long-distance jump dispersal: insights from Argentine ants. Proc Natl Acad Sci 98:1095–1100

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tatem AJ, Hay SI, Rogers DJ (2006) Global traffic and disease vector dispersal. In: Proceedings of the National Academy of Sciences, 103, pp 6242–6247

    Article  CAS  Google Scholar 

  • Tilman D (2004) Niche tradeoffs, neutrality, and community structure: a stochastic theory of resource competition, invasion, and community assembly. Proc Natl Acad Sci 101:10854–10861

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Trabucco A, Zomer RJ (2009) Global aridity index (global-aridity) and global potential evapo-transpiration (global-PET) geospatial database. In: CGIAR Consortium for Spatial Information. http://www.csi.cgiar.org. Accessed 28 Dec 2018

  • van Etten J (2017) R Package gdistance: distances and routes on geographical grids. J Stat Softw 76:1–21

    Google Scholar 

  • Veech JA, Small MF, Baccus JT (2011) The effect of habitat on the range expansion of a native and an introduced bird species. J Biogeogr 38:69–77

    Article  Google Scholar 

  • Vilà M, Espinar JL, Hejda M, Hulme PE, Jarošík V, Maron JL, Pergl J, Schaffner U, Sun Y, Pyšek P (2011) Ecological impacts of invasive alien plants: a meta-analysis of their effects on species, communities and ecosystems. Ecol Lett 14:702–708

    Article  PubMed  Google Scholar 

  • Walther G-R, Roques A, Hulme PE, Sykes MT, Pyšek P, Kühn I, Zobel M, Bacher S, Botta-Dukát Z, Bugmann H (2009) Alien species in a warmer world: risks and opportunities. Trends Ecol Evol 24:686–693

    Article  PubMed  Google Scholar 

  • Wilson JRU, Dormontt EE, Prentis PJ, Lowe AJ, Richardson DM (2009) Something in the way you move: dispersal pathways affect invasion success. Trends Ecol Evol 24:136–144

    Article  PubMed  Google Scholar 

  • Winter M, Kühn I, La Sorte FA, Schweiger O, Nentwig W, Klotz S (2010) The role of non-native plants and vertebrates in defining patterns of compositional dissimilarity within and across continents. Glob Ecol Biogeogr 19:332–342

    Article  Google Scholar 

  • Yang J, La Sorte FA, Pyšek P, Yan P, Nowak D, Mcbride J (2015) The compositional similarity of urban forests among the world’s cities is scale dependent. Glob Ecol Biogeogr 24:1413–1423

    Article  Google Scholar 

Download references

Acknowledgements

FA was funded through a post-doctoral grant from Fundação para a Ciência e Tecnologia (FCT, SFRH/BPD/115968/2016). PA is funded by ‘V Plan Propio de Investigación’ of the Universidad de Sevilla (Spain). LC is funded by the H2020-MSCA-IF-2016 fellowship No 752149. CC was funded by National Funds through FCT, I.P., under the programme of ‘Stimulus of Scientific Employment—Individual Support’ within the contract ‘CEECIND/02037/2017’. The authors would like to thank the two anonymous reviewers for their comments and suggestions to an earlier version, which greatly improved the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fernando Ascensão.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 and 2 (DOCX 9353 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ascensão, F., Latombe, G., Anadón, J.D. et al. Drivers of compositional dissimilarity for native and alien birds: the relative roles of human activity and environmental suitability. Biol Invasions 22, 1447–1460 (2020). https://doi.org/10.1007/s10530-020-02196-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-020-02196-7

Keywords

Navigation