Skip to main content
Log in

Straining 3D Hydrogels with Uniform Z-Axis Strains While Enabling Live Microscopy Imaging

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

External forces play an important role in the development and regulation of many tissues. Such effects are often studied using specialized stretchers—standardized commercial and novel laboratory-designed. While designs for 2D stretchers are abundant, the range of available 3D stretcher designs is more limited, especially when live imaging is required. This work presents a novel method and a stretching device that allow straining of 3D hydrogels from their circumference, using a punctured elastic silicone strip as the sample carrier. The system was primarily constructed from 3D-printed parts and low-cost electronics, rendering it simple and cost-efficient to reproduce in other labs. To demonstrate the system functionality, > 100 μm thick soft fibrin gels (< 1 KPa) were stretched, while performing live confocal imaging. The subsequent strains and fiber alignment were analyzed and found to be relatively homogenous throughout the gel’s thickness (Z axis). The uniform Z-response enabled by our approach was found to be in contrast to a previously reported approach that utilizes an underlying elastic substrate to convey strain to a 3D thick sample. This work advances the ability to study the role of external forces on biological processes under more physiological 3D conditions, and can contribute to the field of tissue engineering.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Bleuel, J., F. Zaucke, G. P. Bruggemann, and A. Niehoff. Effects of cyclic tensile strain on chondrocyte metabolism: a systematic review. PLoS ONE 10:e0119816, 2015.

    PubMed  PubMed Central  Google Scholar 

  2. Bono, N., D. Pezzoli, L. Levesque, C. Loy, G. Candiani, G. B. Fiore, and D. Mantovani. Unraveling the role of mechanical stimulation on smooth muscle cells: a comparative study between 2D and 3D models. Biotechnol. Bioeng. 113:2254–2263, 2016.

    CAS  PubMed  Google Scholar 

  3. Brown, A. E. X., R. I. Litvinov, D. E. Discher, P. K. Purohit, and J. W. Weisel. Multiscale mechanics of fibrin polymer: gel stretching with protein unfolding and loss of water. Science 325:741–744, 2009.

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Carroll, S. F., C. T. Buckley, and D. J. Kelly. Cyclic tensile strain can play a role in directing both intramembranous and endochondral ossification of mesenchymal stem cells. Front. Bioeng. Biotechnol. 5:73, 2017.

    PubMed  PubMed Central  Google Scholar 

  5. CellScale. MCT6 Stretcher.

  6. Chen, K., A. Vigliotti, M. Bacca, R. M. McMeeking, V. S. Deshpande, and J. W. Holmes. Role of boundary conditions in determining cell alignment in response to stretch. Proc. Natl. Acad. Sci. USA 115:986–991, 2018.

    CAS  PubMed  PubMed Central  Google Scholar 

  7. Cui, Y. D., F. M. Hameed, B. Yang, K. Lee, C. Q. Pan, S. Park, and M. Sheetz. Cyclic stretching of soft substrates induces spreading and growth. Nat. Commun. 6:6333, 2015.

    CAS  PubMed  Google Scholar 

  8. de Jonge, N., J. Foolen, M. C. P. Brugmans, S. H. M. Sontjens, F. P. T. Baaijens, and C. V. C. Bouten. Degree of Scaffold degradation influences collagen (re)orientation in engineered tissues. Tissue Eng. Part A 20:1747–1757, 2014.

    PubMed  Google Scholar 

  9. de Jonge, N., F. M. W. Kanters, F. P. T. Baaijens, and C. V. C. Bouten. Strain-induced collagen organization at the micro-level in fibrin-based engineered tissue constructs. Ann. Biomed. Eng. 41:763–774, 2013.

    PubMed  Google Scholar 

  10. De, R., A. Zemel, and S. A. Safran. Dynamics of cell orientation. Nat. Phys. 3:655–659, 2007.

    CAS  Google Scholar 

  11. EPFL Switzerland. OrientationJ plug in. 2019.

  12. Flexcell. Linear Tissue Train® Culture Plate. 2019.

  13. Flexcell. Tissue Train®. 2019.

  14. Foolen, J., V. S. Deshpande, F. M. W. Kanters, and F. P. T. Baaijens. The influence of matrix integrity on stress-fiber remodeling in 3D. Biomaterials 33:7508–7518, 2012.

    CAS  PubMed  Google Scholar 

  15. Gomez, D., S. Natan, Y. Shokef, and A. Lesman. Mechanical interaction between cells facilitates molecular transport. Adv. Biosystems, 2019. https://doi.org/10.1002/adbi.201900192.

    Article  Google Scholar 

  16. Gonzalez-Avalos, P., M. Murnseer, J. Deeg, A. Bachmann, J. Spatz, S. Dooley, R. Eils, and E. Gladilin. Quantification of substrate and cellular strains in stretchable 3D cell cultures: an experimental and computational framework. J. Microsc. 266:115–125, 2017.

    CAS  PubMed  Google Scholar 

  17. Goren, S., Y. Koren, X. Xu, A. Lesman A. Elastic anisotropy governs the decay of cell-induced displacements. http://arxiv.org/abs/1905.04345, 2019

  18. Heher, P., B. Maleiner, J. Pruller, A. H. Teuschl, J. Kollmitzer, X. Monforte, S. Wolbank, H. Redl, D. Runzler, and C. Fuchs. A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain. Acta Biomater. 24:251–265, 2015.

    CAS  PubMed  Google Scholar 

  19. Huang, G. Y., F. Li, X. Zhao, Y. F. Ma, Y. H. Li, M. Lin, G. R. Jin, T. J. Lu, G. M. Genin, and F. Xu. Functional and biomimetic materials for engineering of the three-dimensional cell microenvironment. Chem. Rev. 117:12764–12850, 2017.

    CAS  PubMed  PubMed Central  Google Scholar 

  20. Humphrey, J. D., P. B. Wells, S. Baek, J. J. Hu, K. McLeroy, and A. T. Yeh. A theoretically-motivated biaxial tissue culture system with intravital microscopy. Biomech. Model. Mechanobiol. 7:323–334, 2008.

    CAS  PubMed  Google Scholar 

  21. Kamble, H., M. J. Barton, M. Jun, S. Park, and N. T. Nguyen. Cell stretching devices as research tools: engineering and biological considerations. Lab Chip 16:3193–3203, 2016.

    CAS  PubMed  Google Scholar 

  22. Landau, S., A. Moriel, A. Livne, M. H. Zheng, E. Bouchbinder, and S. Levenberg. Tissue-level mechanosensitivity: predicting and controlling the orientation of 3D vascular networks. Nano Lett. 18:7698–7708, 2018.

    CAS  PubMed  Google Scholar 

  23. Li, Y. H., G. Y. Huang, B. Gao, M. X. Li, G. M. Genin, T. J. Lu, and F. Xu. Magnetically actuated cell-laden microscale hydrogels for probing strain-induced cell responses in three dimensions. Npg Asia Mater. 8:e238, 2016.

    CAS  Google Scholar 

  24. Li, Y. H., G. Y. Huang, M. X. Li, L. Wang, E. L. Elson, T. J. Lu, G. M. Genin, and F. Xu. An approach to quantifying 3D responses of cells to extreme strain. Sci. Rep. 6:19550, 2016.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Li, Y. H., G. Y. Huang, X. H. Zhang, L. Wang, Y. A. Du, T. J. Lu, and F. Xu. Engineering cell alignment in vitro. Biotechnol. Adv. 32:347–365, 2014.

    CAS  PubMed  Google Scholar 

  26. Liu, H. J., J. Usprech, Y. Sun, and C. A. Simmons. A microfabricated platform with hydrogel arrays for 3D mechanical stimulation of cells. Acta Biomater. 34:113–124, 2016.

    PubMed  Google Scholar 

  27. Livne, A., E. Bouchbinder, and B. Geiger. Cell reorientation under cyclic stretching. Nat. Commun. 5:3938, 2014.

    CAS  PubMed  Google Scholar 

  28. Marsano, A., C. Conficconi, M. Lemme, P. Occhetta, E. Gaudiello, E. Votta, G. Cerino, A. Redaelli, and M. Rasponi. Beating heart on a chip: a novel microfluidic platform to generate functional 3D cardiac microtissues. Lab Chip 16:599–610, 2016.

    CAS  PubMed  Google Scholar 

  29. Moraes, C., M. Likhitpanichkul, C. J. Lam, B. M. Beca, Y. Sun, and C. A. Simmons. Microdevice array-based identification of distinct mechanobiological response profiles in layer-specific valve interstitial cells. Integr. Biol. 5:673–680, 2013.

    CAS  Google Scholar 

  30. Munster, S., L. M. Jawerth, B. A. Leslie, J. I. Weitz, B. Fabry, and D. A. Weitz. Strain history dependence of the nonlinear stress response of fibrin and collagen networks. Proc. Natl. Acad. Sci. USA 110:12197–12202, 2013.

    CAS  PubMed  PubMed Central  Google Scholar 

  31. Niklason, L. E., A. T. Yeh, E. A. Calle, Y. Bai, A. Valentin, and J. D. Humphrey. Enabling tools for engineering collagenous tissues integrating bioreactors, intravital imaging, and biomechanical modeling. Proc. Natl. Acad. Sci. USA 107:3335–3339, 2010.

    CAS  PubMed  Google Scholar 

  32. Pampaloni, F., E. G. Reynaud, and E. H. K. Stelzer. The third dimension bridges the gap between cell culture and live tissue. Nat. Rev. Mol. Cell Biol. 8:839–845, 2007.

    CAS  PubMed  Google Scholar 

  33. Panzetta, V., S. Fusco, and P. A. Netti. Cell mechanosensing is regulated by substrate strain energy rather than stiffness. Proc. Natl. Acad. Sci. USA 116:22004–22013, 2019.

    CAS  PubMed  PubMed Central  Google Scholar 

  34. Pennisi, C. P., C. G. Olesen, M. de Zee, J. Rasmussen, and V. Zachar. Uniaxial cyclic strain drives assembly and differentiation of skeletal myocytes. Tissue Eng. Part A 17:2543–2550, 2011.

    PubMed  Google Scholar 

  35. Riching, K. M., B. L. Cox, M. R. Salick, C. Pehlke, A. S. Riching, S. M. Ponik, B. R. Bass, W. C. Crone, Y. Jiang, A. M. Weaver, K. W. Eliceiri, and P. J. Keely. 3D collagen alignment limits protrusions to enhance breast cancer cell persistence. Biophys. J. 107:2546–2558, 2014.

    CAS  PubMed  PubMed Central  Google Scholar 

  36. Riehl, B. D., J. H. Park, I. K. Kwon, and J. Y. Lim. Mechanical stretching for tissue engineering: two-dimensional and three-dimensional constructs. Tissue Eng. Part B 18:288–300, 2012.

    CAS  Google Scholar 

  37. Rubbens, M. P., A. Driessen-Mol, R. A. Boerboom, M. M. J. Koppert, H. C. van Assen, B. M. T. Romeny, F. P. T. Baaijens, and C. V. C. Bouten. Quantification of the temporal evolution of collagen orientation in mechanically conditioned engineered cardiovascular tissues. Ann. Biomed. Eng. 37:1263–1272, 2009.

    PubMed  PubMed Central  Google Scholar 

  38. Schindelin, J., I. Arganda-Carreras, E. Frise, V. Kaynig, M. Longair, T. Pietzsch, S. Preibisch, C. Rueden, S. Saalfeld, B. Schmid, J. Y. Tinevez, D. J. White, V. Hartenstein, K. Eliceiri, P. Tomancak, and A. Cardona. Fiji: an open-source platform for biological-image analysis. Nat. Methods 9:676–682, 2012.

    CAS  PubMed  Google Scholar 

  39. Schurmann, S., S. Wagner, S. Herlitze, C. Fischer, S. Gumbrecht, A. Wirth-Hucking, G. Prolss, L. A. Lautscham, B. Fabry, W. H. Goldmann, V. Nikolova-Krstevski, B. Martinac, and O. Friedrich. The IsoStretcher: an isotropic cell stretch device to study mechanical biosensor pathways in living cells. Biosens. Bioelectron. 81:363–372, 2016.

    CAS  PubMed  Google Scholar 

  40. Sears, C., and R. Kaunas. The many ways adherent cells respond to applied stretch. J. Biomech. 49:1347–1354, 2016.

    PubMed  Google Scholar 

  41. Storm, C., J. J. Pastore, F. C. MacKintosh, T. C. Lubensky, and P. A. Janmey. Nonlinear elasticity in biological gels. Nature 435:191–194, 2005.

    CAS  PubMed  Google Scholar 

  42. STREX. STB-150. 2019.

  43. STREX. Stretch Chambers. 2019.

  44. Tondon, A., H. J. Hsu, and R. Kaunas. Dependence of cyclic stretch-induced stress fiber reorientation on stretch waveform. J. Biomech. 45:728–735, 2012.

    PubMed  Google Scholar 

  45. Vader, D., A. Kabla, D. Weitz, and L. Mahadevan. Strain-induced alignment in collagen gels. PLoS ONE 4:5902, 2009.

    Google Scholar 

  46. Walker, M., M. Godin, and A. E. Pelling. A vacuum-actuated microtissue stretcher for long-term exposure to oscillatory strain within a 3D matrix. Biomed. Microdevices 20:43, 2018.

    PubMed  Google Scholar 

  47. Walters, B., T. Uynuk-Ool, M. Rothdiener, J. Palm, M. L. Hart, J. P. Stegemann, and B. Rolauffs. Engineering the geometrical shape of mesenchymal stromal cells through defined cyclic stretch regimens. Sci. Rep. 7:6640, 2017.

    PubMed  PubMed Central  Google Scholar 

  48. Wang, L., Y. H. Li, B. Chen, S. B. Liu, M. X. Li, L. Zheng, P. F. Wang, T. J. Lu, and F. Xu. Patterning cellular alignment through stretching hydrogels with programmable strain gradients. ACS Appl. Mater. Interfaces 7:15088–15097, 2015.

    CAS  PubMed  Google Scholar 

  49. Weidenhamer, N. K., and R. T. Tranquillo. Influence of cyclic mechanical stretch and tissue constraints on cellular and collagen alignment in fibroblast-derived cell sheets. Tissue Eng. Part C 19:386–395, 2013.

    CAS  Google Scholar 

  50. Wen, Q., A. Basu, P. A. Janmey, and A. G. Yodh. Non-affine deformations in polymer hydrogels. Soft Matter 8:8039–8049, 2012.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Wen, Q., A. Basu, J. P. Winer, A. Yodh, and P. A. Janmey. Local and global deformations in a strain-stiffening fibrin gel. New J. Phys. 9:428, 2007.

    Google Scholar 

  52. Yung, Y. C., H. Vandenburgh, and D. J. Mooney. Cellular strain assessment tool (CSAT): precision-controlled cyclic uniaxial tensile loading. J. Biomech. 42:178–182, 2009.

    PubMed  Google Scholar 

  53. Zhao, R. G., T. Boudou, W. G. Wang, C. S. Chen, and D. H. Reich. Decoupling cell and matrix mechanics in engineered microtissues using magnetically actuated microcantilevers. Adv. Mater. 25:1699–1705, 2013.

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ayelet Lesman.

Additional information

Associate Editor Smadar Cohen oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Roitblat Riba, A., Natan, S., Kolel, A. et al. Straining 3D Hydrogels with Uniform Z-Axis Strains While Enabling Live Microscopy Imaging. Ann Biomed Eng 48, 868–880 (2020). https://doi.org/10.1007/s10439-019-02426-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02426-7

Keywords

Navigation