Skip to main content
Log in

High sensitive polyaniline nanosheets (PANINS) @rGO as non-enzymatic glucose sensor

  • Published:
Journal of Materials Science: Materials in Electronics Aims and scope Submit manuscript

Abstract

This study aims the amperometric enzyme-free glucose sensing of interlayered Polyaniline nanosheets @reduced grapheme oxide (PANINS@rGO). Conductive PANINS were synthesized using in situ chemical oxidative polymerization method. The PANINS@rGO nanocomposite was prepared by the solution mixing method and as-synthesized material was fully examined using various spectroscopy and microscopy techniques. PANINS@rGO composite coated on screen-printed carbon electrode (SPCE) was studied for electrochemical behaviour for the detection of non-enzymatic glucose. The fabricated sensor matrix was tested towards detection of glucose efficacy using cyclic voltammetry (CV) and Chronoamperometry (CA) techniques in the presence of 0.1 M NaOH electrolyte in a range of 1–10 mM at an optimum working potential of 60 mV s−1. PANINS@rGO/SPCE absorbed with high sensitivity (3448.27 μA mM−1 cm−2) and excellent low detection limit (LOD) 30 nM, (S/N = 3). Furthermore, the obtained results of the proposed PANINS@rGO/SPCE fabricated a finite sensor for non-enzymatic glucose sensor. Thus this report proves the practical opportunities for the development of environmentally benign, cost effective and chemically stable electrode materials for sensors, which may be beneficial for the expansion of economically viable enzyme free electrochemical glucose sensor devices.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Y.J. Zhai, J.H. Li, X.Y. Chu, M.Z. Xu, F.J. Jin, X. Li, X. Fang, Z.P. Wei, X.H. Wang, MoS2 microflowers based electrochemical sensing platform for non-enzymatic glucose detection. J. Alloys Compd. (2016). https://doi.org/10.1016/j.jallcom.2016.02.130

    Article  Google Scholar 

  2. A.D. Association, Diagnosis and classification of diabetes mellitus. Diabetes Care 37, S81–S90 (2014)

    Article  Google Scholar 

  3. D.W. Hwang, S. Lee, M. Seo, T.D. Chung, Recent advances in electrochemical non-enzymatic glucose sensors—a review. Anal. Chim. Acta 1033, 1–34 (2018). https://doi.org/10.1016/j.aca.2018.05.051

    Article  CAS  Google Scholar 

  4. S.A. Zaidi, J.H. Shin, Recent developments in nanostructure based electrochemical glucose sensors. Talanta 140, 30–42 (2016). https://doi.org/10.1016/j.talanta.2015.11.033

    Article  CAS  Google Scholar 

  5. L. Liu, W. Qi, X. Gao, C. Wang, G. Wang, Synergistic effect of metal ion additives on graphitic carbon nitride nanosheet-templated electrodeposition of Cu@CuO for enzymefree glucose detection. J. Alloys Compd. (2018). https://doi.org/10.1016/j.jallcom.2018.02.19

    Article  Google Scholar 

  6. R. Rebelo, A.I. Barbosa, D. Caballero, I.K. Kwon, J.M. Oliveira, S.C. Kundu, R.L. Reis, V.M. Correlo, 3D biosensors in advanced medical diagnostics of high mortality diseases. Biosens. Bioelectron. 130, 20–39 (2019). https://doi.org/10.1016/j.bios.2018.12.057

    Article  CAS  Google Scholar 

  7. M.S. Steiner, A. Duerkop, O.S. Wolfbeis, Optical methods for sensing glucose. Chem. Soc. Rev. 40, 4805–4839 (2011)

    Article  CAS  Google Scholar 

  8. P.W. Barone, R.S. Parker, M.S. Strano, In Vivo fluorescence detection of glucose using a single-walled carbon nanotube optical sensor: design, fluorophore properties, advantages, and disadvantages. Anal. Chem. 77, 7556–7562 (2005)

    Article  CAS  Google Scholar 

  9. J. Luo, P. Luo, M. Xie, K. Du, B. Zhao, F. Pan, P. Fan, F. Zeng, D. Zhang, Z. Zheng, G. Liang, A new type of glucose biosensor based on surface acoustic wave resonator using Mn-doped ZnO multilayer structure. Biosens. Bioelectron. 49, 512–518 (2013)

    Article  CAS  Google Scholar 

  10. J. Tian, S. Liu, Y. Luo, X. Sun, Fe(III)-based coordination polymer nanoparticles: peroxidase-like catalytic activity and their application to hydrogen peroxide and glucose detection. Catal. Sci. Technol. 2, 432–436 (2012)

    Article  CAS  Google Scholar 

  11. G. Wang, X. He, L. Wang, A. Gu, Y. Huang, B. Fang, B. Geng, X. Zhang, Non-enzymatic electrochemical sensing of glucose. Microchim. Acta 180, 161–186 (2013)

    Article  CAS  Google Scholar 

  12. D. Zhai, B. Liu, Y. Shi, L. Pan, Y. Wang, W. Li, R. Zhang, G. Yu, Highly sensitive Glucose sensor based on Pt nanoparticle/polyaniline hydrogel heterostructures. ACS Nano 7, 3540–3546 (2013)

    Article  CAS  Google Scholar 

  13. X. Kang, J. Wang, H. Wu, I.A. Aksay, J. Liu, Y. Lin, Glucose oxidase-graphene Chitosan modified electrode for direct electrochemistry and glucose sensing. Biosens. Bioelectron. 25, 901–905 (2009)

    Article  CAS  Google Scholar 

  14. S. Liu, J. Tian, L. Wang, Y. Luo, W. Lu, X. Sun, Self-assembled graphene platelet Glucose oxidase nanostructures for glucose biosensing. Biosens. Bioelectron. 26, 4491–4496 (2011). https://doi.org/10.1007/s00604-012-0923-1

    Article  CAS  Google Scholar 

  15. W.-C. Lee, K.-B. Kim, N.G. Gurudatt, K.K. Hussain, C.S. Choi, D.-S. Park, Y.-B. Shim, Comparison of enzymatic and non-enzymatic glucose sensors based on hierarchical Au-Ni alloy with a conductive polymer. Biosens. Bioelectron. (2019). https://doi.org/10.1016/j.bios.2019.01.028

    Article  Google Scholar 

  16. N. Karikalan, M. Velmurugan, S.M. Chen, C. Karuppiah, Modern approach to the synthesis of Ni (OH) 2 decorated sulfur doped carbon nanoparticles for the nonenzymatic glucose sensor. ACS Appl. Mater. Interfaces 8, 22545–22553 (2016)

    Article  CAS  Google Scholar 

  17. S. Radhakrishnan, J. Mathiyarasu, Graphene–carbon nanotubes modified electrochemical sensors, in Graphene-based electrochemical sensors for biomolecules, ed. by A. Pandikumar, P. Rameshkumar (Elsevier, Amsterdam, 2019), pp. 187–205

    Chapter  Google Scholar 

  18. A. Mahmoud, M. Echabaane, K. Omri, L. El Mir, R.B. Chaabane, Development of an impedimetric non-enzymatic sensor based on ZnO and Cu doped ZnO nanoparticles for the detection of glucose. J. Alloys Compd. 786, 960–968 (2019). https://doi.org/10.1016/j.jallcom.2019.02.060

    Article  CAS  Google Scholar 

  19. L. Sinha, S. Pakhira, P. Bhojane, S. Mali, C.K. Hong, P.M. Shirage, Hybridization of Co3O4 and α-MnO2 nanostructures for high-performance nonenzymatic glucose sensing. ACS Sustain. Chem. Eng. 6(10), 13248–13261 (2018). https://doi.org/10.1021/acssuschemeng.8b02835

    Article  CAS  Google Scholar 

  20. Y. Xie, Y. Song, Y. Zhang, L. Xu, L. Miao, C. Peng, L. Wang, Cu metalorganic framework-derived Cu Nanospheres@Porous carbon/macroporous carbon for electrochemical sensing glucose. J. Alloys Compd. 235, 97–102 (2018). https://doi.org/10.1016/j.jallcom.2018.05.064

    Article  CAS  Google Scholar 

  21. H. Dai, P. Cao, D. Chen, Y. Li, N. Wang, H. Ma, M. Lin, Ni-Co-S/PPy core-shell nanohybrid on nickel foam as a non-enzymatic electrochemical glucose sensor. Synth. Met. 235, 97–102 (2018). https://doi.org/10.1016/j.synthmet.2017.12.004

    Article  CAS  Google Scholar 

  22. S. Komathi, A.I. Gopalan, N. Muthuchamy, K.P. Lee, Polyaniline nanoflowers grafted onto nanodiamonds via a soft template-guided secondary nucleation process for high-performance glucose sensing. RSC Adv. 7(25), 15342–15351 (2017). https://doi.org/10.1039/c6ra24760a

    Article  CAS  Google Scholar 

  23. K. Justice Babu, S. Sheet, Y.S. Lee, G. Gnana Kumar, Three-dimensional dendrite Cu−Co/reduced graphene oxide architectures on a disposable pencil graphite electrode as an electrochemical sensor for nonenzymatic glucose detection. ACS Sustain. Chem. Eng. (2018). https://doi.org/10.1021/acssuschemeng.7b03314

    Article  Google Scholar 

  24. G.G. Wallace, P.R. Teasdale, G.M. Spinks, L.A. Kane-Maguire, Conductive electroactive polymers: intelligent materials systems (CRC Press, Boca Raton, 2002)

    Book  Google Scholar 

  25. R. Arukula, M. Vinothkannan, A.R. Kim, D.J. Yoo, Cumulative effect of bimetallic alloy, conductive polymer and graphene toward electrooxidation of methanol: an efficient anode catalyst for direct methanol fuel cells. J. Alloys Compd. 771, 477–488 (2019). https://doi.org/10.1016/j.jallcom.2018.08.303

    Article  CAS  Google Scholar 

  26. M. Jaymand, Recent progress in chemical modification of polyaniline. Progr. Polym. Sci. 38(9), 1287–1306 (2013). https://doi.org/10.1016/j.progpolymsci.2013.05.015

    Article  CAS  Google Scholar 

  27. C. Xiong, T. Li, Y. Zhu, T. Zhao, A. Dang, H. Li, X. Ji, Y. Shang, M. Khan, Two-step approach of fabrication of interconnected nanoporous 3D reduced graphene oxide-carbon nanotube-polyaniline hybrid as a binder-free supercapacitor electrode. J. Alloys Compd. 695, 1248–1259 (2017). https://doi.org/10.1016/j.jallcom.2016.10.253

    Article  CAS  Google Scholar 

  28. H. Wang, L. Ma, M. Gan, T. Zhou, "Design and fabrication of macroporous polyaniline nanorods@ graphene-like MoS2 nanocomposite with the high electrochemical performance for supercapacitors. J. Alloys Compd. 699, 176–182 (2017). https://doi.org/10.1016/j.jallcom.2016.12.344

    Article  CAS  Google Scholar 

  29. J. Wang, Z. Wu, K. Hu, X. Chen, H. Yin, High conductivity graphene-like MoS2/polyaniline nanocomposites and its application in a supercapacitor. J. Alloys Compd. 619, 38–43 (2015). https://doi.org/10.1016/j.jallcom.2014.09.008

    Article  CAS  Google Scholar 

  30. Z. Zhou, S. Gu, Y. Zhang, F. Wu, N. Zhou, Lithium storage performance improvement of NaTi2 (PO4) 3 with nitrogen-doped carbon derived from Polyaniline,". J. Alloys Compd. 767, 745–752 (2018)

    Article  CAS  Google Scholar 

  31. N. Chen, Y. Ren, P. Kong, L. Tan, H. Feng, Y. Luo, In situ one-pot preparation of reduced graphene oxide/polyaniline composite for high-performance electrochemical capacitors. Appl. Surf. Sci. 392, 71–79 (2017). https://doi.org/10.1016/j.apsusc.2016.07.168

    Article  CAS  Google Scholar 

  32. M. Mitra, C. Kulsi, K. Chatterjee, K. Kargupta, S. Ganguly, D. Banerjee, S. Goswami, Reduced graphene oxide-polyaniline composites—synthesis, characterization and optimization for thermoelectric applications. RSC Adv. 5(39), 31039–31048 (2015). https://doi.org/10.1039/c5ra01794g

    Article  CAS  Google Scholar 

  33. A. Bhattacharya, A. De, Conducting polymers in solution—progress toward processibility. J. Macromol. Sci. C 39, 17–56 (1999). https://doi.org/10.1081/MC-100101416

    Article  Google Scholar 

  34. K. Krukiewicz, A. Katunin, The effect of the reaction medium on the conductivity and morphology of polyaniline doped with camphorsulfonic acid. A Synth. Met. 214, 45–49 (2016). https://doi.org/10.1016/j.synthmet.2016.01.017

    Article  CAS  Google Scholar 

  35. K. Tzou, R.V. Gregory, A method to prepare soluble polyaniline salt solutions—in situ doping of PANI base with organic dopants in polar solvents. Synth. Met. 53(3), 365–377 (1993). https://doi.org/10.1016/0379-6779(93)91106-C

    Article  CAS  Google Scholar 

  36. A. Esmaeeli, A. Ghaffarinejad, A. Zahedi, O. Vahidi, Copper oxide-polyaniline nanofiber modified fluorine doped tin oxide (FTO) electrode as a non-enzymatic glucose sensor. Sens. Actuators B 266, 294–301 (2018)

    Article  CAS  Google Scholar 

  37. Q. Xu, S.-X. Gu, L. Jin, Y.-E. Zhou, Z. Yang, W. Wang, X. Hu, Graphene/polyaniline/gold nanoparticles nanocomposite for the direct electron transfer of glucose oxidase and glucose biosensing. Sens. Actuators B 190, 562–569 (2014). https://doi.org/10.1016/j.snb.2013.09.049

    Article  CAS  Google Scholar 

  38. S. Bilal, W. Ullah, Polyaniline@ CuNi nanocomposite: a highly selective, stable and efficient electrode material for binder free non-enzymatic glucose sensor. Electrochim. Acta 284, 382–391 (2018). https://doi.org/10.1016/j.electacta.2018.07.165

    Article  CAS  Google Scholar 

  39. Y. Kong, Y. Sha, Y. Tao, Y. Qin, H. Xue, M. Lu, Non-enzymatic glucose sensor based on nickel hexacyanoferrate/polyaniline hybrids on graphene prepared by a one-step process. J. Electrochem. Soc. 161(12), B269–B274 (2014). https://doi.org/10.1149/2.0961412jes

    Article  CAS  Google Scholar 

  40. Y. Wang, J. Zhong, F. Ding, Q. Zhao, Z. Zhang, X. Liu, Y. Liu, H. Rao, P. Zou, X. Wang, A bifunctional NiCo2S4/reduced graphene oxide@ polyaniline nanocomposite as a highly-efficient electrode for glucose and rutin detection. New J. Chem. 42(12), 9398–9409 (2018). https://doi.org/10.1039/C8NJ00663F

    Article  CAS  Google Scholar 

  41. K. Ghanbari, F. Ahmadi, NiO hedgehog-like nanostructures/Au/polyaniline nanofibers/reduced graphene oxide nanocomposite with electrocatalytic activity for non-enzymatic detection of glucose. Anal. Biochem. 518, 143–153 (2017). https://doi.org/10.1016/j.ab.2016.11.020

    Article  CAS  Google Scholar 

  42. M. Xu, Y. Song, Y. Ye, C. Gong, Y. Shen, L. Wang, L. Wang, A novel flexible electrochemical glucose sensor based on gold nanoparticles/polyaniline arrays/carbon cloth electrode. Sens. Actuators B 252, 1187–1193 (2017). https://doi.org/10.1016/j.snb.2017.07.147

    Article  CAS  Google Scholar 

  43. S. Kailasa, B. Geeta, N. Jayrambabu, R. Kiran Kumar Reddy, S. Sharma, K. Venkateswara Rao, Conductive polyaniline nanosheets (CPANINS) for a non-enzymatic glucose sensor. Mater. Lett. 245, 118–121 (2019). https://doi.org/10.1016/j.matlet.2019.02.103

    Article  CAS  Google Scholar 

  44. H. Wu, J. Fan, E. Liu, X. Hu, Y. Ma, X. Fan, Y. Li, C. Tang, Facile hydrothermal synthesis of TiO2 nanospindles-reduced graphene oxide composite with enhanced photocatalytic activity. J. Alloys Compd. 623, 298–303 (2015). https://doi.org/10.1016/j.jallcom.2014.10.153

    Article  CAS  Google Scholar 

  45. M. Ghorbani, H. Abdizadeh, M.R. Golobostanfard, Reduction of graphene oxide via modified hummers method. Procedia Mater. Sci. 11, 326–330 (2015). https://doi.org/10.1016/j.mspro.2015.11.104

    Article  CAS  Google Scholar 

  46. W. Zheng, L. Hu, L.Y. Lee, K.Y. Wong, Copper nanoparticles/polyaniline/graphene composite as a highly sensitive electrochemical glucose sensor. J. Electroanal. Chem. 781, 155–160 (2016). https://doi.org/10.1016/j.jelechem.2016.08.004

    Article  CAS  Google Scholar 

  47. A. Viswanathan, A.N. Shetty, Single-step synthesis of rGO, copper oxide and polyaniline nanocomposites for high energy supercapacitors. Electrochim. Acta 289, 204–217 (2018). https://doi.org/10.1016/j.electacta.2018.09.033

    Article  CAS  Google Scholar 

  48. Y. Wang, Z. Hua, L. Jia, H. Li, T. Li, C. Kai, Y. Gu, Optimizing the polymerization conditions of soluble polyaniline doped with itaconic acid. J. Macromol. Sci. A 51(7), 577–581 (2014). https://doi.org/10.1080/10601325.2014.916179

    Article  CAS  Google Scholar 

  49. S. Kailasa et al., Twisted polyaniline nanobelts@ rGO for room temperature NO2 sensing. Mater. Lett. 257, 126687 (2019)

    Article  CAS  Google Scholar 

  50. H. Zeghioud, S. Lamouri, Z. Safidine, M. Belbachir, Chemical synthesis and characterization of highly soluble conducting polyaniline in mixtures of common solvents. J. Serb. Chem. Soc. 80(7), 917–931 (2015). https://doi.org/10.2298/JSC140719003Z

    Article  CAS  Google Scholar 

  51. A. Chiolerio, S. Bocchini, F. Scaravaggi, S. Porro, D. Perrone, D. Beretta, C.F. Pirri, Synthesis of polyaniline-based inks for inkjet printed devices: electrical characterization highlighting the effect of primary and secondary doping. Semicond. Sci. Technol. 30(10), 104001 (2015). https://doi.org/10.1088/0268-1242/30/10/104001

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Centre for Nanoscience and Technology, Institute of Science Technology, JNTU Hyderabad.

Funding

The authors did not receive any research fund or grant from any organization.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Venkateswara Rao.

Ethics declarations

Conflict of interest

The authors declared no potential conflicts of interest with respect to the research, authorship and/or publication of this article.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (DOCX 221 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kailasa, S., Reddy, R.K.K., Reddy, M.S.B. et al. High sensitive polyaniline nanosheets (PANINS) @rGO as non-enzymatic glucose sensor. J Mater Sci: Mater Electron 31, 2926–2937 (2020). https://doi.org/10.1007/s10854-019-02837-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10854-019-02837-1

Navigation