Skip to main content

Advertisement

Log in

The synergetic effect of antimony (Sb2O3) and melamine cyanurate (MCA) on the flame-retardant behavior of silicon rubber

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The silicone rubber composites with antimony trioxide (Sb2O3) and melamine cyanurate (MCA) additive were fabricated. The results of scanning electron microscope are shown that the Sb2O3 and MCA are uniformly dispersed into the silicone rubber (SR). It was found that tensile strength and elongation at break were down to 300% and 5.3 MPa with the increase in MCA content. The flammability of the composite was also studied by limiting oxygen index (LOI) and cone calorimetry test. The results indicated that a 31.5% LOI of the composite was achieved, and the heat release rate and total heat release values of the composite with MCA were apparently reduced compared to that without MCA. Meantime, the retention of elongation and tensile strength keeps good behavior. The time to ignition of the composite with MCA is belonged. The results show that the microstructure of combustion residue of MCA additive is continuous and smooth, and it is a good barrier to isolate combustible gas and oxygen. All these test results demonstrated that the synergistic effect of Sb2O3 and MCA successfully enhanced the flame-retardant properties of the SR composite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15

Similar content being viewed by others

References

  1. Li L, Qian Y, Jiao CM (2013) Synergistic flame retardant effect of melamine in ethylene–vinyl acetate/layered double hydroxides composites. J Therm Anal Calorim 114:45–55

    Google Scholar 

  2. Wang X, Dou W (2012) Preparation of graphite oxide (GO) and the thermal stability of silicone rubber/GO nanocomposites. Thermochim Acta 529:25–28

    CAS  Google Scholar 

  3. Chai H, Tang X, Ni M et al (2015) Preparation and properties of flexible flame-retardant neutron shielding material based on methyl vinyl silicone rubber. J Nucl Mater 464:210–215

    CAS  Google Scholar 

  4. Fang S, Hu Y, Song L et al (2008) Mechanical properties, fire performance and thermal stability of magnesium hydroxide sulfate hydrate whiskers flame retardant silicone rubber. J Mater Sci 43:1057–1062

    CAS  Google Scholar 

  5. Kemaloglu S, Ozkoc G, Aytac A (2010) Properties of thermally conductive micro and nano size boron nitride reinforced silicon rubber composites. Thermochim Acta 499:40–47

    CAS  Google Scholar 

  6. Seyedmehdi SA, Zhang H, Zhu J (2016) Influence of production method, silicone type and thickness on silicon rubber superhydrophobic coatings. Prog Org Coat 90:291–295

    CAS  Google Scholar 

  7. Hu Y, Mei R, An Z et al (2013) Silicon rubber/hollow glass microsphere composites: influence of broken hollow glass microsphere on mechanical and thermal insulation property. Compos Sci Technol 79:64–69

    CAS  Google Scholar 

  8. Ota K, Hirai K (2000) Flame-retardant silicon rubber composition for coating electrical wire and cable. US patent 6,011,105[P]. 2000-1-4

  9. Zhou Y, Liu R, Hou F et al (2013) Morphology of electrical trees in silicon rubber. J Electrost 71:440–448

    CAS  Google Scholar 

  10. Nie Q, Zhou YX, Chen ZZ et al (2009) Influence of frequency on tree initiation voltage and electrical tree shape in silicone rubber. High Volt Eng 1:141–145

    Google Scholar 

  11. Irvine DJ, McCluskey JA, Robinson IM (2000) Fire hazards and some common polymers. Polym Degrad Stab 67:383–396

    CAS  Google Scholar 

  12. Lu SY, Hamerton I (2002) Recent developments in the chemistry of halogen-free flame retardant polymers. Prog Polym Sci 27:1661–1712

    CAS  Google Scholar 

  13. Dittrich B, Wartig KA, Mülhaupt R et al (2014) Flame-retardancy properties of intumescent ammonium poly (phosphate) and mineral filler magnesium hydroxide in combination with graphene. Polymers 6:2875–2895

    Google Scholar 

  14. Zhang W, Li X, Shan Z et al (2019) Surface modification of magnesium hydroxide by wet process and effect on the thermal stability of silicone rubber. Appl Surf Sci 465:740–746

    CAS  Google Scholar 

  15. Savas LA, Deniz TK, Tayfun U et al (2017) Effect of microcapsulated red phosphorus on flame retardant, thermal and mechanical properties of thermoplastic polyurethane composites filled with huntite & hydromagnesite mineral. Polym Degrad Stab 135:121–129

    CAS  Google Scholar 

  16. Yang JC, Cao ZJ, Wang YZ et al (2015) Ammonium polyphosphate-based nanocoating for melamine foam towards high flame retardancy and anti-shrinkage in fire. Polymer 66:86–93

    CAS  Google Scholar 

  17. Müller P, Schartel B (2016) Melamine poly (metal phosphates) as flame retardant in epoxy resin: performance, modes of action, and synergy. J Appl Polym Sci 133(24):43549(1–14)

    Google Scholar 

  18. Ionescu M, Mihalache I, Zugravu V et al (1994) Inherently flame retardant rigid polyurethane foams based on new triazinic polyether polyols. Cell Polym 13:57–68

    CAS  Google Scholar 

  19. Weil E, McSwigan B (1994) Melamine phosphates and pyrophosphates in flame-retardant coatings: old products with new potential. J Coat Technol 66:75–82

    CAS  Google Scholar 

  20. Sha K, Hu YL, Wang YH et al (2014) Preparation of flame retardant polyamide 6/melamine cyanurate via in situ polymerisation and its characterisation. Mater Res Innovations 18:S4-843–S4-847

    Google Scholar 

  21. Huang H, Zhang K, Jiang J et al (2017) Highly dispersed melamine cyanurate flame-retardant epoxy resin composites. Polym Int 66:85–91

    CAS  Google Scholar 

  22. Zhao M, Yi D, Camino G et al (2017) Interdigitated crystalline MMT–MCA in polyamide 6. RSC Adv 7:861–869

    CAS  Google Scholar 

  23. Hou W, Fu Y, Zeng C et al (2018) Enhancement of flame retardancy and mechanical properties of polyamide 6 by incorporating melamine cyanurate combined with attapulgite. J Appl Polym Sci 137(2):47298(1–10)

    Google Scholar 

  24. Si M, Feng J, Hao J et al (2014) Synergistic flame retardant effects and mechanisms of nano-Sb2O3 in combination with aluminum phosphinate in poly (ethylene terephthalate). Polym Degrad Stab 100:70–78

    CAS  Google Scholar 

  25. Niu L, Xu J, Kang C et al (2019) Influence of nano-Sb2O3 particles on mechanical properties of PBT flame retardant composites. Ferroelectrics 546:148–157

    CAS  Google Scholar 

  26. Yang D, Zhang W, Jiang B (2013) Ceramization and oxidation behaviors of silicone rubber ablative composite under oxyacetylene flame. Ceram Int 39:1575–1581

    CAS  Google Scholar 

  27. Fang W, Lai X, Li H et al (2014) Effect of urea-containing anti-tracking additive on the tracking and erosion resistance of addition-cure liquid silicone rubber. Polym Test 37:19–27

    CAS  Google Scholar 

  28. Tao W, Li J (2018) Melamine cyanurate tailored by base and its multi effects on flame retardancy of polyamide 6. Appl Surf Sci 456:751–762

    CAS  Google Scholar 

  29. Liu Y, Wang Q (2009) The investigation on the flame retardancy mechanism of nitrogen flame retardant melamine cyanurate in polyamide 6. J Polym Res 16:583–589

    CAS  Google Scholar 

  30. Dante RC, Martín-Ramos P et al (2013) Synthesis of crumpled nanosheets of polymeric carbon nitride from melamine cyanurate. J Solid State Chem 201:153–163

    CAS  Google Scholar 

  31. Yang W, Yang F, Yang R et al (2016) Ammonium polyphosphate/melamine cyanurate synergetic flame retardant system for use in papermaking. BioResources 11:2308–2318

    CAS  Google Scholar 

  32. Kiliaris P, Papaspyrides CD, Pfaendner R (2008) Polyamide 6 filled with melamine cyanurate and layered silicates: evaluation of flame retardancy and physical properties. Macromol Mater Eng 293:740–751

    CAS  Google Scholar 

  33. Imiela M, Anyszka R, Bieliński DM et al (2019) Synergistic effect of mica, glass frit, and melamine cyanurate for improving fire resistance of styrene-butadiene rubber composites destined for ceramizable coatings. Coatings 9:170

    Google Scholar 

  34. Januszewski R, Dutkiewicz M, Maciejewski H et al (2018) Synthesis and characterization of phosphorus-containing, silicone rubber based flame retardant coatings. React Funct Polym 123:1–9

    CAS  Google Scholar 

  35. Chen Y, Wang Q, Yan W et al (2006) Preparation of flame retardant polyamide 6 composite with melamine cyanurate nanoparticles in situ formed in extrusion process. Polym Degrad Stab 91:2632–2643

    CAS  Google Scholar 

  36. Ma T, Guo C (2017) Synergistic effect between melamine cyanurate and a novel flame retardant curing agent containing a caged bicyclic phosphate on flame retardancy and thermal behavior of epoxy resins. J Anal Appl Pyrolysis 124:239–246

    CAS  Google Scholar 

  37. Braun U, Schartel B, Fichera MA et al (2007) Flame retardancy mechanisms of aluminium phosphinate in combination with melamine polyphosphate and zinc borate in glass-fibre reinforced polyamide 6, 6. Polym Degrad Stab 92:1528–1545

    CAS  Google Scholar 

  38. Qiu S, Ma C, Wang X et al (2018) Melamine-containing polyphosphazene wrapped ammonium polyphosphate: a novel multifunctional organic–inorganic hybrid flame retardant. J Hazard Mater 344:839–848

    CAS  PubMed  Google Scholar 

  39. Sacristán M, Hull TR, Stec AA et al (2010) Cone calorimetry studies of fire retardant soybean-oil-based copolymers containing silicon or boron: comparison of additive and reactive approaches. Polym Degrad Stab 95:1269–1274

    Google Scholar 

  40. Gilman JW, Jackson CL, Morgan AB et al (2000) Flammability properties of polymer-layered-silicate nanocomposites. Polypropylene and polystyrene nanocomposites. Chem Mater 12:1866–1873

    CAS  Google Scholar 

  41. Costa FR, Wagenknecht U, Heinrich G (2007) LDPE/Mg–Al layered double hydroxide nanocomposite: thermal and flammability properties. Polym Degrad Stab 92:1813–1823

    CAS  Google Scholar 

  42. Chen X, Song W, Liu J et al (2015) Synergistic flame-retardant effects between aluminum hypophosphite and expandable graphite in silicone rubber composites. J Therm Anal Calorim 120:1819–1826

    CAS  Google Scholar 

  43. Schartel B, Hull TR (2007) Development of fire-retarded materials—interpretation of cone calorimeter data. Fire Mater 31:327–354

    CAS  Google Scholar 

  44. Jiao C, Chen X (2010) Flammability and thermal degradation of intumescent flame-retardant polypropylene composites. Polym Eng Sci 50:767–772

    CAS  Google Scholar 

  45. Tang S, Qian L, Qiu Y et al (2014) The effect of morphology on the flame-retardant behaviors of melamine cyanurate in PA6 composites. J Appl Polym Sci 131:40558

    Google Scholar 

  46. Zhang K, Wu K, Zhang YK et al (2013) Flammability characteristics and performance of flame-retarded epoxy composite based on melamine cyanurate and ammonium polyphosphate. Polym Plast Technol Eng 52:525–532

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by Controllable preparation of graphene hydrogel loaded nano-zero-valent iron and removal of chlorophenol pollutants from groundwater [NSFC (2019) No. 27].

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xuezheng Huang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Huang, X., Tian, Z., Zhang, D. et al. The synergetic effect of antimony (Sb2O3) and melamine cyanurate (MCA) on the flame-retardant behavior of silicon rubber. Polym. Bull. 78, 185–202 (2021). https://doi.org/10.1007/s00289-019-03098-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-019-03098-y

Keywords

Navigation