Skip to main content
Log in

An Online Contactless Investigation of the Meniscus Velocity in a Continuous Casting Mold Using Lorentz Force Velocimetry

  • Published:
Metallurgical and Materials Transactions B Aims and scope Submit manuscript

Abstract

Monitoring the meniscus velocities of molten steel in continuous casting molds is critical for revealing the velocity field in the whole mold and consequently for process control and final product quality, however, the realization of contactless online measurement in an actual metallurgy environment is a highly challenging task. In this paper, we develop a special Lorentz force velocimetry (LFV) device to measure the local meniscus velocities of molten steel flow, and this device can adapt to harsh environments with high temperature, opaque liquid metal and surrounding complex electromagnetic noise. A series of laboratory experiments and calibrations were conducted to provide support for a follow-up in-plant test. The LFV device exhibits capability and feasibility for measuring the meniscus velocity in continuous casting molds during plant tests. On this basis, the velocity field and turbulent flow in a wide slab continuous casting mold are analyzed. The measured meniscus velocity is on the order of ~ 10−1 m/s, which is consistent with the results obtained via the nail-board approach.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Notes

  1. LSB-100 g is a registered trademark of Futek Company. This sensor can function in the environment of − 50 °C to 93 °C, and its data acquisition component is developed by Dewesoft Company, Slovenia.

  2. DL-1 is a registered trademark of Beijing Yong Guangming Medical Instrument Co., Ltd.; power: 2 kW, size of furnace plate: 155 mm × 155 mm × 1 mm.

References

  1. https://www.worldsteel.org/steel-by-topic/statistics/steel-statistical-yearbook-.html. Accessed 2017.

  2. D. Jian: Ilmenau University of Technology, Ilmenau, 2012.

  3. P. S. Srinivas, A. Singh, J. M. Korath and A. K. Jana, ISIJ International 2017, vol. 57, pp. 1553-1562.

    CAS  Google Scholar 

  4. R. M. McDavid and B. G. Thomas, Metall Mater Trans B 1996, vol. 27, pp. 672-685.

    CAS  Google Scholar 

  5. B. G. Thomas, Metall Mater Trans B 2002, vol. 33, pp. 795-812.

    CAS  Google Scholar 

  6. B. G. Thomas, Steel Res. Int. 2018, vol. 89, art. no. 1700312.

    Google Scholar 

  7. J. Sengupta, H. J. Shin, B. G. Thomas and S. H. Kim, Acta Materialia 2006, vol. 54, pp. 1165-1173.

    CAS  Google Scholar 

  8. T. Watanabe and M. Iguchi, ISIJ International 2009, vol. 49, pp. 182-188.

    CAS  Google Scholar 

  9. L. Zhang, S. Yang, K. Cai, J. Li, X. Wan and B. G. Thomas, Metallurgical and Materials Transactions B 2007, vol. 38, pp. 63-83.

    CAS  Google Scholar 

  10. R. Liu, B. G. Thomas, J. Sengupta, S. D. Chung and M. Trinh, ISIJ International 2014, vol. 54, pp. 2314-2323.

    CAS  Google Scholar 

  11. L. Ren, Iron and Steel 2016, vol. 51, pp. 35-40.

    Google Scholar 

  12. L. Ren, L. Zhang and Q. Wang, Metall. Res. Technol. 2018, vol. 115, art. no. 102.

    Google Scholar 

  13. M. Iguchi and Y. Terauchi, ISIJ International 2002, vol. 42, pp. 939-943.

    CAS  Google Scholar 

  14. J. Kubota, NKK Technical Review 2001, vol. 85, pp. 1-9.

    Google Scholar 

  15. M. Iguchi, H. Kosaka, H. Mizukami, M. Kawamoto, A. Hayashi, Y. Terauchi, M. Hanao and H. Kawabata, Metall Mater Trans B 1999, vol. 30, pp. 53-59.

    CAS  Google Scholar 

  16. R. Liu, J. Sengupta, D. Crosbie, S. Chung, M. Trinh and B. G. Thomas, Sensors, Sampling, and Simulation for Process Control, Wiley, New York, 2011, pp. 51-58.

    Google Scholar 

  17. B. Rietow and B.G. Thomas: Proc. of AISTech 2008 Steelmaking Conf., Warrendale, PA, 2008.

  18. K. Cukierski and B. G. Thomas, Metallurgical and Materials Transactions B 2007, vol. 39, pp. 94-107.

    Google Scholar 

  19. A. Wegfrass, C. Diethold, M. Werner, T. Fröhlich, B. Halbedel, F. Hilbrunner, C. Resagk and A. Thess, Applied Physics Letters 2012, vol. 100, art. no. 194103.

    Google Scholar 

  20. D. Hernández, J. Schleichert, C. Karcher, T. Fröhlich, T. Wondrak and K. Timmel, Meas Sci Technol 2016, vol. 27, art. no. 065302.

    Google Scholar 

  21. M. Ratajczak, D. Hernández, T. Richter, D. Otte, D. Buchenau, N. Krauter and T. Wondrak, IOP Conf. Ser. Mater. Sci. Eng. 2017, vol. 228, art. no. 012023.

    Google Scholar 

  22. J. A. Shercliff, Journal of Fluid Mechanics 1962, vol. 13, 513–518.

    Google Scholar 

  23. A. Thess, E. V. Votyakov and Y. Kolesnikov, Phys Rev Lett 2006, vol. 96, art. no. 164501.

    CAS  Google Scholar 

  24. A. Thess, E. Votyakov, B. Knaepen and O. Zikanov, New Journal of Physics 2007, vol. 9, art. no. 299.

    Google Scholar 

  25. A. Viré, B. Knaepen and A. Thess, Physics of Fluids 2010, vol. 22, art. no. 125101.

    Google Scholar 

  26. V. Minchenya, C. Karcher, Y. Kolesnikov and A. Thess, Flow Measurement and Instrumentation 2011, vol. 22, pp. 242-247.

    Google Scholar 

  27. X. Wang, R. Klein, Y. Kolesnikov and A. Thess, Materials Science Forum 2011, vol. 690, pp. 99-102.

    CAS  Google Scholar 

  28. X. Wang, Y. Kolesnikov and A. Thess, Meas Sci Technol 2012, vol. 23, art. no. 045005.

    Google Scholar 

  29. A. Wegfrass, C. Diethold, M. Werner, C. Resagk, T. Fröhlich, B. Halbedel and A. Thess, Meas Sci Technol 2012, vol. 23, art. no. 105307.

    Google Scholar 

  30. D. Jian and C. Karcher, Meas Sci Technol 2012, vol. 23, art. no. 074021.

    Google Scholar 

  31. R. Klein, C. Weidermann, X. Wang, M. Gramss, A. Alferenok, A. Thieme, Y. Kolesnikov, C. Karcher and A. Thess, Technisches Messen 2012, vol. 79, pp. 394-398.

    CAS  Google Scholar 

  32. N. Dubovikova, C. Resagk, C. Karcher and Y. Kolesnikov, Meas. Sci. Technol. 2016, vol. 27, art. no. 055102.

    Google Scholar 

  33. D. Hernandez, T. Boeck, C. Karcher and T. Wondrak, Magnetohydrodynamics 2017, vol. 53, pp. 233-243.

    Google Scholar 

  34. Y. Tan, R. Liu, S. Dai, X. Wang, M. Ni, J. Yang, N. Dubovikova, Y. Kolesnikov and C. Karcher, Nuclear Science and Techniques 2018, vol. 29, art. no. 80.

    Google Scholar 

  35. Y. Kolesnikov, C. Karcher and A. Thess, Metallurgical and Materials Transactions B 2011, vol. 42, pp. 441-450.

    Google Scholar 

  36. D. Jian, J. Iron Steel Res. 2012, vol. 19, pp. 509–13.

    Google Scholar 

  37. D. Hernandez, T. Boeck, C. Karcher and T. Wondrak, Meas Sci Technol 2018, vol. 29, art. no. 015301.

    Google Scholar 

  38. T. Zürner, T. Vogt, C. Resagk, S. Eckert and J. Schumacher, Experiments in Fluids 2017, vol. 59, art. no. 3.

    Google Scholar 

  39. C. Stelian, Flow Measurement and Instrumentation 2013, vol. 33, pp. 36-44.

    Google Scholar 

  40. X. Wang, M. Isac and R. I. L. Guthrie, ISIJ International 2009, vol. 49, pp. 975-984.

    CAS  Google Scholar 

  41. M. Suzuki, H. Mizukami, T. Kitagawa, K. Kawakami, S. Uchida and Y. Komatsu, ISIJ International 1991, vol. 31, pp. 254-261.

    Google Scholar 

  42. F. Felten, Y. Fautrelle, Y. Du Terrail and O. Metais, Applied Mathematical Modelling 2004, vol. 28, pp. 15-27.

    Google Scholar 

  43. X. Wang, Y. Fautrelle, J. Etay and R. Moreau, Metallurgical and Materials Transactions B 2008, vol. 40, pp. 82-90.

    Google Scholar 

  44. P. Andrzejewski, K. U. Kohler and W. Pluschkell, Steel Res 1992, vol. 63, pp. 242-246.

    Google Scholar 

Download references

Acknowledgments

This work is supported by the project funding (YZ201567) of the Chinese Academy of Sciences, the National Natural Science Foundation of China (51574091), and the Institute Collaborative Innovation Fund (111800XX62). Our thanks are also given to the Baosteel Central Research Institute for their experimental venues and technical guidance.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Runcong Liu or Xiaodong Wang.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted May 20, 2019.

Appendix

Appendix

In the actual continuous casting process, a layer of protective slag with almost zero conductivity is covered above the molten steel and insulates it from the copper mold. Therefore, the distribution of induced eddy current in the liquid steel with flux insulation in the copper mold is similar to that in a copper plate moving in the air.

In our work, the length, width, and height of the copper plate were 500, 300, and 50 mm, and those of the magnet were, 50, 50, and 10 mm (in Table I). It should be noted that here the width of the copper plate matches the width of the in-plant mold. We calculate the induced electric density by numerical simulation, to analyze the distribution characteristics of induced current and Lorentz force at different locations between the magnet and copper plate, as shown in Figures A1 and A2.

Fig. A1
figure 12

Characteristics of Lorentz force change caused by magnets relative to copper plate at different positions

Fig. A2
figure 13

Induced current density distribution under different off-center ratio. (a) 0 pct, (b) 16.7 pct, (c) 50 pct, (d) 100 pct

In Figure A1, The Lorentz force is analyzed at different off-center ratios, which is the ratio of the deviation between the permanent magnet center and the copper plate center to the half width of the copper plate. Since the Lorentz force calculated by us is the integral force in the area influenced by the moving conductor, we can see that, the closer the permanent magnet is to the edge of the copper plate, the greater the deviation of the Lorentz force is (from 100 to 20.8 pct), that is to say, the greater the influence of the edge effect.

This phenomenon can be explained by the distribution of the induced current density, as shown in Figure A2: From (a) and (b), as the position of permanent magnet changes, the distribution of the eddy current in copper plate changes correspondingly, but the Lorentz force hardly changes (Figure A1) because the eddy current distribution is limited by the geometry of the moving conductor, while the main area contributing to the Lorentz force is directly below the permanent magnet. However, if the permanent magnet is too close to the edge of the copper plate, the Lorentz force will not directly reflect the speed of the moving conductor due to the intensification of the edge effect of electromagnetic induction (Figures A2(c) and (d)). However, the edge effect of electromagnetic induction can be significant if the permanent magnet is too close to the edge of the copper plate (Figures A2(c) and (d)), which should be addressed if the flow speed close to the edge is to be measured.

In our work, the calibration is performed by placing the device above the center of the copper plate, and the in-plant test is performed with the device in the corresponding position.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zheng, J., Liu, R., Wang, X. et al. An Online Contactless Investigation of the Meniscus Velocity in a Continuous Casting Mold Using Lorentz Force Velocimetry. Metall Mater Trans B 51, 558–569 (2020). https://doi.org/10.1007/s11663-019-01757-z

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11663-019-01757-z

Navigation