1932

Abstract

Neonicotinoids have been used to protect crops and animals from insect pests since the 1990s, but there are concerns regarding their adverse effects on nontarget organisms, notably on bees. Enhanced resistance to neonicotinoids in pests is becoming well documented. We address the current understanding of neonicotinoid target site interactions, selectivity, and metabolism not only in pests but also in beneficial insects such as bees. The findings are relevant to the management of both neonicotinoids and the new generation of pesticides targeting insect nicotinic acetylcholine receptors.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010818-021747
2020-01-06
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/60/1/annurev-pharmtox-010818-021747.html?itemId=/content/journals/10.1146/annurev-pharmtox-010818-021747&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Jeschke P, Nauen R, Beck ME 2013. Nicotinic acetylcholine receptor agonists: a milestone for modern crop protection. Angew. Chem. Int. Ed. 52:9464–85
    [Google Scholar]
  2. 2. 
    Matsuda K, Buckingham SD, Kleier D, Rauh JJ, Grauso M, Sattelle DB 2001. Neonicotinoids: insecticides acting on insect nicotinic acetylcholine receptors. Trends Pharmacol. Sci. 22:573–80
    [Google Scholar]
  3. 3. 
    Ihara M, Buckingham SD, Matsuda K, Sattelle DB 2017. Modes of action, resistance and toxicity of insecticides targeting nicotinic acetylcholine receptors. Curr. Med. Chem. 24:2925–34
    [Google Scholar]
  4. 4. 
    Casida JE. 2018. Neonicotinoids and other insect nicotinic receptor competitive modulators: progress and prospects. Annu. Rev. Entomol. 63:125–44
    [Google Scholar]
  5. 5. 
    Bass C, Denholm I, Williamson MS, Nauen R 2015. The global status of insect resistance to neonicotinoid insecticides. Pestic. Biochem. Physiol. 121:78–87
    [Google Scholar]
  6. 6. 
    Ihara M, Matsuda K. 2018. Neonicotinoids: molecular mechanisms of action, insights into resistance and impact on pollinators. Curr. Opin. Insect. Sci. 30:86–92
    [Google Scholar]
  7. 7. 
    Blacquiere T, Smagghe G, van Gestel CA, Mommaerts V 2012. Neonicotinoids in bees: a review on concentrations, side-effects and risk assessment. Ecotoxicology 21:973–92
    [Google Scholar]
  8. 8. 
    Gill RJ, Ramos-Rodriguez O, Raine NE 2012. Combined pesticide exposure severely affects individual- and colony-level traits in bees. Nature 491:105–8
    [Google Scholar]
  9. 9. 
    Henry M, Beguin M, Requier F, Rollin O, Odoux JF et al. 2012. A common pesticide decreases foraging success and survival in honey bees. Science 336:348–50
    [Google Scholar]
  10. 10. 
    Whitehorn PR, O'Connor S, Wackers FL, Goulson D 2012. Neonicotinoid pesticide reduces bumble bee colony growth and queen production. Science 336:351–52
    [Google Scholar]
  11. 11. 
    Feltham H, Park K, Goulson D 2014. Field realistic doses of pesticide imidacloprid reduce bumblebee pollen foraging efficiency. Ecotoxicology 23:317–23
    [Google Scholar]
  12. 12. 
    Lundin O, Rundlof M, Smith HG, Fries I, Bommarco R 2015. Neonicotinoid insecticides and their impacts on bees: a systematic review of research approaches and identification of knowledge gaps. PLOS ONE 10:e0136928
    [Google Scholar]
  13. 13. 
    Moffat C, Pacheco JG, Sharp S, Samson AJ, Bollan KA et al. 2015. Chronic exposure to neonicotinoids increases neuronal vulnerability to mitochondrial dysfunction in the bumblebee (Bombus terrestris). FASEB J 29:2112–19
    [Google Scholar]
  14. 14. 
    Rundlöf M, Andersson GK, Bommarco R, Fries I, Hederstrom V et al. 2015. Seed coating with a neonicotinoid insecticide negatively affects wild bees. Nature 521:77–80
    [Google Scholar]
  15. 15. 
    Woodcock BA, Bullock JM, Shore RF, Heard MS, Pereira MG et al. 2017. Country-specific effects of neonicotinoid pesticides on honey bees and wild bees. Science 356:1393–95
    [Google Scholar]
  16. 16. 
    Anderson NL, Harmon-Threatt AN 2019. Chronic contact with realistic soil concentrations of imidacloprid affects the mass, immature development speed, and adult longevity of solitary bees. Sci. Rep. 9:3724
    [Google Scholar]
  17. 17. 
    Osterman J, Wintermantel D, Locke B, Jonsson O, Semberg E et al. 2019. Clothianidin seed-treatment has no detectable negative impact on honeybee colonies and their pathogens. Nat. Commun. 10:692
    [Google Scholar]
  18. 18. 
    Wintermantel D, Locke B, Andersson GKS, Semberg E, Forsgren E et al. 2018. Field-level clothianidin exposure affects bumblebees but generally not their pathogens. Nat. Commun. 9:5446
    [Google Scholar]
  19. 19. 
    Crall JD, Switzer CM, Oppenheimer RL, Ford Versypt AN, Dey B et al. 2018. Neonicotinoid exposure disrupts bumblebee nest behavior, social networks, and thermoregulation. Science 362:683–86
    [Google Scholar]
  20. 20. 
    Colgan TJ, Fletcher IK, Arce AN, Gill RJ, Ramos Rodrigues A et al. 2019. Caste- and pesticide-specific effects of neonicotinoid pesticide exposure on gene expression in bumblebees. Mol. Ecol. 28:1964–74
    [Google Scholar]
  21. 21. 
    Sappington JD. 2018. Imidacloprid alters ant sociobehavioral traits at environmentally relevant concentrations. Ecotoxicology 27:1179–87
    [Google Scholar]
  22. 22. 
    Whitehorn PR, Norville G, Gilburn A, Goulson D 2018. Larval exposure to the neonicotinoid imidacloprid impacts adult size in the farmland butterfly Pieris brassicae. . PeerJ 6:e4772
    [Google Scholar]
  23. 23. 
    Hallmann CA, Foppen RP, van Turnhout CA, de Kroon H, Jongejans E 2014. Declines in insectivorous birds are associated with high neonicotinoid concentrations. Nature 511:341–43
    [Google Scholar]
  24. 24. 
    Eng ML, Stutchbury BJM, Morrissey CA 2017. Imidacloprid and chlorpyrifos insecticides impair migratory ability in a seed-eating songbird. Sci. Rep. 7:15176
    [Google Scholar]
  25. 25. 
    Ertl HMH, Mora MA, Brightsmith DJ, Navarro-Alberto JA 2018. Potential impact of neonicotinoid use on Northern bobwhite (Colinus virginianus) in Texas: a historical analysis. PLOS ONE 13:e0191100
    [Google Scholar]
  26. 26. 
    Cressey D. 2017. The bitter battle over the world's most popular insecticides. Nature 551:156–58
    [Google Scholar]
  27. 27. 
    Goulson D. 2018. Call to restrict neonicotinoids. Science 360:973
    [Google Scholar]
  28. 28. 
    Taillebois E, Cartereau A, Jones AK, Thany SH 2018. Neonicotinoid insecticides mode of action on insect nicotinic acetylcholine receptors using binding studies. Pestic. Biochem. Physiol. 151:59–66
    [Google Scholar]
  29. 29. 
    Schroeder ME, Flattum RF. 1984. The mode of action and neurotoxic properties of the nitromethylene heterocycle insecticides. Pestic. Biochem. Physiol. 22:148–60
    [Google Scholar]
  30. 30. 
    Sattelle DB, Buckingham SD, Wafford KA, Sherby SM, Bakry NM et al. 1989. Actions of the insecticide 2(nitromethylene)tetrahydro-1,3-thiazine on insect and vertebrate nicotinic acetylcholine receptors. Proc. R. Soc. Lond. B Biol. Sci. 237:501–14
    [Google Scholar]
  31. 31. 
    Buckingham SD, Balk ML, Lummis SC, Jewess P, Sattelle DB 1995. Actions of nitromethylenes on an α-bungarotoxin-sensitive neuronal nicotinic acetylcholine receptor. Neuropharmacology 34:591–97
    [Google Scholar]
  32. 32. 
    Bai DL, Lummis SCR, Leicht W, Breer H, Sattelle DB 1991. Actions of imidacloprid and a related nitromethylene on cholinergic receptors of an identified insect motor-neuron. Pestic. Sci. 33:197–204
    [Google Scholar]
  33. 33. 
    Kagabu S. 1997. Chloronicotinyl insecticides—discovery, application and future perspective. Rev. Toxicol. 1:75–129
    [Google Scholar]
  34. 34. 
    Tomizawa M, Casida JE. 2005. Neonicotinoid insecticide toxicology: mechanisms of selective action. Annu. Rev. Pharmacol. Toxicol. 45:247–68
    [Google Scholar]
  35. 35. 
    Ohno I, Tomizawa M, Durkin KA, Naruse Y, Casida JE, Kagabu S 2009. Molecular features of neonicotinoid pharmacophore variants interacting with the insect nicotinic receptor. Chem. Res. Toxicol. 22:476–82
    [Google Scholar]
  36. 36. 
    Tomizawa M, Lee DL, Casida JE 2000. Neonicotinoid insecticides: molecular features conferring selectivity for insect versus mammalian nicotinic receptors. J. Agric. Food Chem. 48:6016–24
    [Google Scholar]
  37. 37. 
    Zhong W, Gallivan JP, Zhang Y, Li L, Lester HA, Dougherty DA 1998. From ab initio quantum mechanics to molecular neurobiology: a cation-π binding site in the nicotinic receptor. PNAS 95:12088–93
    [Google Scholar]
  38. 38. 
    Matsuda K, Shimomura M, Ihara M, Akamatsu M, Sattelle DB 2005. Neonicotinoids show selective and diverse actions on their nicotinic receptor targets: electrophysiology, molecular biology, and receptor modeling studies. Biosci. Biotechnol. Biochem. 69:1442–52
    [Google Scholar]
  39. 39. 
    Matsuda K, Kanaoka S, Akamatsu M, Sattelle DB 2009. Diverse actions and target-site selectivity of neonicotinoids: structural insights. Mol. Pharmacol. 76:1–10
    [Google Scholar]
  40. 40. 
    Kiriyama K, Nishiwaki H, Nakagawa Y, Nishimura K 2003. Insecticidal activity and nicotinic acetylcholine receptor binding of dinotefuran and its analogues in the housefly. Musca domestica. Pest Manag. Sci. 59:1093–100
    [Google Scholar]
  41. 41. 
    Ihara M, Brown LA, Ishida C, Okuda H, Sattelle DB, Matsuda K 2006. Actions of imidacloprid, clothianidin and related neonicotinoids on nicotinic acetylcholine receptors of American cockroach neurons and their relationships with insecticidal potency. J. Pestic. Sci. 31:35–40
    [Google Scholar]
  42. 42. 
    Ihara M, Matsuda K, Shimomura M, Sattelle DB, Komai K 2004. Super agonist actions of clothianidin and related compounds on the SADβ2 nicotinic acetylcholine receptor expressed in Xenopus laevis oocytes. Biosci. Biotechnol. Biochem. 68:761–63
    [Google Scholar]
  43. 43. 
    Brown LA, Ihara M, Buckingham SD, Matsuda K, Sattelle DB 2006. Neonicotinoid insecticides display partial and super agonist actions on native insect nicotinic acetylcholine receptors. J. Neurochem. 99:608–15
    [Google Scholar]
  44. 44. 
    Nagata K, Aistrup GL, Song JH, Narahashi T 1996. Subconductance-state currents generated by imidacloprid at the nicotinic acetylcholine receptor in PC 12 cells. Neuroreport 7:1025–28
    [Google Scholar]
  45. 45. 
    Salgado VL, Saar R. 2004. Desensitizing and non-desensitizing subtypes of α-bungarotoxin-sensitive nicotinic acetylcholine receptors in cockroach neurons. J. Insect. Physiol. 50:867–79
    [Google Scholar]
  46. 46. 
    Ihara M, Hirata K, Ishida C, Kagabu S, Matsuda K 2007. Blocking actions of alkylene-tethered bis-neonicotinoids on nicotinic acetylcholine receptors expressed by terminal abdominal ganglion neurons of Periplanetaamericana. Neurosci. Lett 425:137–40
    [Google Scholar]
  47. 47. 
    Matsuda K, Buckingham SD, Freeman JC, Squire MD, Baylis HA, Sattelle DB 1998. Effects of the α subunit on imidacloprid sensitivity of recombinant nicotinic acetylcholine receptors. Br. J. Pharmacol. 123:518–24
    [Google Scholar]
  48. 48. 
    Toshima K, Ihara M, Kanaoka S, Tarumoto K, Yamada A et al. 2008. Potentiation and blocking actions of neonicotinoids on the response to acetylcholine of the neuronal α4β2 nicotinic acetylcholine receptor. J. Pestic. Sci. 33:146–51
    [Google Scholar]
  49. 49. 
    Sparks TC, Watson GB, Loso MR, Geng C, Babcock JM, Thomas JD 2013. Sulfoxaflor and the sulfoximine insecticides: chemistry, mode of action and basis for efficacy on resistant insects. Pestic. Biochem. Physiol. 107:1–7
    [Google Scholar]
  50. 50. 
    Watson GB, Olson MB, Beavers KW, Loso MR, Sparks TC 2017. Characterization of a nicotinic acetylcholine receptor binding site for sulfoxaflor, a new sulfoximine insecticide for the control of sap-feeding insect pests. Pestic. Biochem. Physiol. 143:90–94
    [Google Scholar]
  51. 51. 
    Nauen R, Jeschke P, Velten R, Beck ME, Ebbinghaus-Kintscher U et al. 2015. Flupyradifurone: a brief profile of a new butenolide insecticide. Pest Manag. Sci. 71:850–62
    [Google Scholar]
  52. 52. 
    Jeschke P, Nauen R, Gutbrod O, Beck ME, Matthiesen S et al. 2015. Flupyradifurone (Sivanto) and its novel butenolide pharmacophore: structural considerations. Pestic. Biochem. Physiol. 121:31–38
    [Google Scholar]
  53. 53. 
    Cordova D, Benner EA, Schroeder ME, Holyoke CW Jr, Zhang W et al. 2016. Mode of action of triflumezopyrim: a novel mesoionic insecticide which inhibits the nicotinic acetylcholine receptor. Insect Biochem. Mol. Biol. 74:32–41
    [Google Scholar]
  54. 54. 
    Holyoke CW, Zhang W, Pahutski TF, Lahm GP, Tong M-HT et al. 2015. Triflumezopyrim: discovery and optimization of a mesoionic insecticide for rice. ACS Symp. Ser. 1204:365–78
    [Google Scholar]
  55. 55. 
    Zhang W, Holyoke CW Jr, Pahutski TF, Lahm GP, Barry JD et al. 2017. Mesoionic pyrido[1,2-a]pyrimidinones: discovery of triflumezopyrim as a potent hopper insecticide. Bioorg. Med. Chem. Lett. 27:16–20
    [Google Scholar]
  56. 56. 
    Sattelle DB, Matsuda K. 2018. Editorial overview: insect neuroreceptors and ion channels—roles as targets in the control of insect vectors and pests. Curr. Opin. Insect. Sci. 30:iii–v
    [Google Scholar]
  57. 57. 
    Unwin N. 2013. Nicotinic acetylcholine receptor and the structural basis of neuromuscular transmission: insights from Torpedo postsynaptic membranes. Q. Rev. Biophys. 46:283–322
    [Google Scholar]
  58. 58. 
    Nemecz A, Prevost MS, Menny A, Corringer PJ 2016. Emerging molecular mechanisms of signal transduction in pentameric ligand-gated ion channels. Neuron 90:452–70
    [Google Scholar]
  59. 59. 
    Sattelle DB. 1980. Acetylcholine receptors of insects. Adv. Insect. Physiol. 15:215–315
    [Google Scholar]
  60. 60. 
    Changeux JP. 2018. The nicotinic acetylcholine receptor: a typical ‘allosteric machine’. Philos. Trans. R. Soc. Lond. B Biol. Sci. 373:20170174
    [Google Scholar]
  61. 61. 
    Changeux JP. 2018. Structural identification of the nicotinic receptor ion channel. Trends Neurosci 41:67–70
    [Google Scholar]
  62. 62. 
    Olsen RW. 2018. GABAA receptor: positive and negative allosteric modulators. Neuropharmacology 136:10–22
    [Google Scholar]
  63. 63. 
    Hannan S, Minere M, Harris J, Izquierdo P, Thomas P et al. 2019. GABAAR isoform and subunit structural motifs determine synaptic and extrasynaptic receptor localisation. Neuropharmacology In press
    [Google Scholar]
  64. 64. 
    Lynch JW, Zhang Y, Talwar S, Estrada-Mondragon A 2017. Glycine receptor drug discovery. Adv. Pharmacol. 79:225–53
    [Google Scholar]
  65. 65. 
    Miller PS, Smart TG. 2010. Binding, activation and modulation of Cys-loop receptors. Trends Pharmacol. Sci. 31:161–74
    [Google Scholar]
  66. 66. 
    Raymond V, Sattelle DB. 2002. Novel animal-health drug targets from ligand-gated chloride channels. Nat. Rev. Drug Discov. 1:427–36
    [Google Scholar]
  67. 67. 
    Couturier S, Bertrand D, Matter JM, Hernandez MC, Bertrand S et al. 1990. A neuronal nicotinic acetylcholine receptor subunit α7 is developmentally regulated and forms a homo-oligomeric channel blocked by α-BTX. Neuron 5:847–56
    [Google Scholar]
  68. 68. 
    Gotti C, Moretti M, Maggi R, Longhi R, Hanke W et al. 1997. α7 and α8 nicotinic receptor subtypes immunopurified from chick retina have different immunological, pharmacological and functional properties. Eur. J. Neurosci. 9:1201–11
    [Google Scholar]
  69. 69. 
    Vetter DE, Liberman MC, Mann J, Barhanin J, Boulter J et al. 1999. Role of α9 nicotinic ACh receptor subunits in the development and function of cochlear efferent innervation. Neuron 23:93–103
    [Google Scholar]
  70. 70. 
    Sgard F, Charpantier E, Bertrand S, Walker N, Caput D et al. 2002. A novel human nicotinic receptor subunit, α10, that confers functionality to the α9-subunit. Mol. Pharmacol. 61:150–59
    [Google Scholar]
  71. 71. 
    Lansdell SJ, Collins T, Goodchild J, Millar NS 2012. The Drosophila nicotinic acetylcholine receptor subunits Dα5 and Dα7 form functional homomeric and heteromeric ion channels. BMC Neurosci 13:73
    [Google Scholar]
  72. 72. 
    Corringer PJ, Le Novere N, Changeux JP 2000. Nicotinic receptors at the amino acid level. Annu. Rev. Pharmacol. Toxicol. 40:431–58
    [Google Scholar]
  73. 73. 
    Taylor P, Talley TT, Radic Z, Hansen SB, Hibbs RE, Shi J 2007. Structure-guided drug design: conferring selectivity among neuronal nicotinic receptor and acetylcholine-binding protein subtypes. Biochem. Pharmacol. 74:1164–71
    [Google Scholar]
  74. 74. 
    Shimomura M, Yokota M, Matsuda K, Sattelle DB, Komai K 2004. Roles of loop C and the loop B-C interval of the nicotinic receptor α subunit in its selective interactions with imidacloprid in insects. Neurosci. Lett. 363:195–98
    [Google Scholar]
  75. 75. 
    Shimomura M, Okuda H, Matsuda K, Komai K, Akamatsu M, Sattelle DB 2002. Effects of mutations of a glutamine residue in loop D of the α7 nicotinic acetylcholine receptor on agonist profiles for neonicotinoid insecticides and related ligands. Br. J. Pharmacol. 137:162–69
    [Google Scholar]
  76. 76. 
    Shimomura M, Yokota M, Ihara M, Akamatsu M, Sattelle DB, Matsuda K 2006. Role in the selectivity of neonicotinoids of insect-specific basic residues in loop D of the nicotinic acetylcholine receptor agonist binding site. Mol. Pharmacol. 70:1255–63
    [Google Scholar]
  77. 77. 
    Shimomura M, Satoh H, Yokota M, Ihara M, Matsuda K, Sattelle DB 2005. Insect-vertebrate chimeric nicotinic acetylcholine receptors identify a region, loop B to the N-terminus of the Drosophila Dα2 subunit, which contributes to neonicotinoid sensitivity. Neurosci. Lett. 385:168–72
    [Google Scholar]
  78. 78. 
    Matsuda K, Shimomura M, Kondo Y, Ihara M, Hashigami K et al. 2000. Role of loop D of the α7 nicotinic acetylcholine receptor in its interaction with the insecticide imidacloprid and related neonicotinoids. Br. J. Pharmacol. 130:981–86
    [Google Scholar]
  79. 79. 
    Toshima K, Kanaoka S, Yamada A, Tarumoto K, Akamatsu M et al. 2009. Combined roles of loops C and D in the interactions of a neonicotinoid insecticide imidacloprid with the α4β2 nicotinic acetylcholine receptor. Neuropharmacology 56:264–72
    [Google Scholar]
  80. 80. 
    Bass C, Puinean AM, Andrews M, Cutler P, Daniels M et al. 2011. Mutation of a nicotinic acetylcholine receptor β subunit is associated with resistance to neonicotinoid insecticides in the aphid Myzus persicae. . BMC Neurosci 12:51
    [Google Scholar]
  81. 81. 
    Ihara M, Okajima T, Yamashita A, Oda T, Hirata K et al. 2008. Crystal structures of Lymnaea stagnalis AChBP in complex with neonicotinoid insecticides imidacloprid and clothianidin. Invert. Neurosci. 8:71–81
    [Google Scholar]
  82. 82. 
    Ihara M, Okajima T, Yamashita A, Oda T, Asano T et al. 2014. Studies on an acetylcholine binding protein identify a basic residue in loop G on the β1-strand as a new structural determinant of neonicotinoid actions. Mol. Pharmacol. 86:736–46
    [Google Scholar]
  83. 83. 
    Talley TT, Harel M, Hibbs RE, Radic Z, Tomizawa M et al. 2008. Atomic interactions of neonicotinoid agonists with AChBP: molecular recognition of the distinctive electronegative pharmacophore. PNAS 105:7606–11
    [Google Scholar]
  84. 84. 
    Ihara M, Sattelle DB, Matsuda K 2015. Probing new components (loop G and the α-α interface) of neonicotinoid binding sites on nicotinic acetylcholine receptors. Pestic. Biochem. Physiol. 121:47–52
    [Google Scholar]
  85. 85. 
    Hikida M, Shimada S, Kurata R, Shigetou S, Ihara M et al. 2018. Combined effects of mutations in loop C and the loop D-E-G triangle on neonicotinoid interactions with Drosophila Dα1/chicken β2 hybrid nAChRs. Pestic. Biochem. Physiol. 151:47–52
    [Google Scholar]
  86. 86. 
    Ihara M, Hikida M, Matsushita H, Yamanaka K, Kishimoto Y et al. 2018. Loops D, E and G in the Drosophila Dα1 subunit contribute to high neonicotinoid sensitivity of Dα1-chicken β2 nicotinic acetylcholine receptor. Br. J. Pharmacol. 175:1999–2012
    [Google Scholar]
  87. 87. 
    Webb B, Sali A. 2016. Comparative protein structure modeling using MODELLER. Curr. Protoc. Bioinform. 15:5.6.1–30
    [Google Scholar]
  88. 88. 
    Walsh RM Jr, Roh SH, Gharpure A, Morales-Perez CL, Teng J, Hibbs RE. 2018. Structural principles of distinct assemblies of the human α4β2 nicotinic receptor. Nature 557:261–65
    [Google Scholar]
  89. 89. 
    Joussen N, Heckel DG, Haas M, Schuphan I, Schmidt B 2008. Metabolism of imidacloprid and DDT by P450 CYP6G1 expressed in cell cultures of Nicotiana tabacum suggests detoxification of these insecticides in Cyp6g1-overexpressing strains of Drosophila melanogaster, leading to resistance. Pest Manag. Sci. 64:65–73
    [Google Scholar]
  90. 90. 
    Hoi KK, Daborn PJ, Battlay P, Robin C, Batterham P et al. 2014. Dissecting the insect metabolic machinery using twin ion mass spectrometry: a single P450 enzyme metabolizing the insecticide imidacloprid in vivo. Anal. Chem 86:3525–32
    [Google Scholar]
  91. 91. 
    Bass C, Carvalho RA, Oliphant L, Puinean AM, Field LM et al. 2011. Overexpression of a cytochrome P450 monooxygenase, CYP6ER1, is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens. Insect. Mol. Biol. 20:763–73
    [Google Scholar]
  92. 92. 
    Zhang Y, Yang Y, Sun H, Liu Z 2016. Metabolic imidacloprid resistance in the brown planthopper, Nilaparvata lugens, relies on multiple P450 enzymes. Insect Biochem. Mol. Biol. 79:50–56
    [Google Scholar]
  93. 93. 
    Schmidt JM, Good RT, Appleton B, Sherrard J, Raymant GC et al. 2010. Copy number variation and transposable elements feature in recent, ongoing adaptation at the Cyp6g1 locus. PLOS Genet 6:e1000998
    [Google Scholar]
  94. 94. 
    Zimmer CT, Garrood WT, Singh KS, Randall E, Lueke B et al. 2018. Neofunctionalization of duplicated P450 genes drives the evolution of insecticide resistance in the brown planthopper. Curr. Biol. 28:268–74.e5
    [Google Scholar]
  95. 95. 
    Fusetto R, Denecke S, Perry T, O'Hair RAJ, Batterham P 2017. Partitioning the roles of CYP6G1 and gut microbes in the metabolism of the insecticide imidacloprid in Drosophila melanogaster.Sci. . Rep 7:11339
    [Google Scholar]
  96. 96. 
    Reid WR, Sun H, Becnel JJ, Clark AG, Scott JG 2019. Overexpression of a glutathione S-transferase (Mdgst) and a galactosyltransferase-like gene (Mdgt1) is responsible for imidacloprid resistance in house flies. Pest Manag. Sci. 75:37–44
    [Google Scholar]
  97. 97. 
    Liu Z, Williamson MS, Lansdell SJ, Denholm I, Han Z, Millar NS 2005. A nicotinic acetylcholine receptor mutation conferring target-site resistance to imidacloprid in Nilaparvata lugens (brown planthopper). PNAS 102:8420–25
    [Google Scholar]
  98. 98. 
    Liu Z, Williamson MS, Lansdell SJ, Han Z, Denholm I, Millar NS 2006. A nicotinic acetylcholine receptor mutation (Y151S) causes reduced agonist potency to a range of neonicotinoid insecticides. J. Neurochem. 99:1273–81
    [Google Scholar]
  99. 99. 
    Hirata K, Kiyota R, Matsuura A, Toda S, Yamamoto A, Iwasa T 2015. Association between the R81T mutation in the nicotinic acetylcholine receptor β1 subunit of Aphis gossypii and the differential resistance to acetamiprid and imidacloprid. J. Pestic. Sci. 40:25–31
    [Google Scholar]
  100. 100. 
    Perry T, Heckel DG, McKenzie JA, Batterham P 2008. Mutations in Dα1 or Dβ2 nicotinic acetylcholine receptor subunits can confer resistance to neonicotinoids in Drosophila melanogaster.Insect Biochem. Mol. Biol 38:520–28
    [Google Scholar]
  101. 101. 
    Somers J, Luong HN, Mitchell J, Batterham P, Perry T 2017. Pleiotropic effects of loss of the Dα1 subunit in Drosophila melanogaster: implications for insecticide resistance. Genetics 205:263–71
    [Google Scholar]
  102. 102. 
    Somers J, Luong HNB, Batterham P, Perry T 2018. Deletion of the nicotinic acetylcholine receptor subunit gene Dα1 confers insecticide resistance, but at what cost?. Fly 12:46–54
    [Google Scholar]
  103. 103. 
    Li J, Shao Y, Ding Z, Bao H, Liu Z et al. 2010. Native subunit composition of two insect nicotinic receptor subtypes with differing affinities for the insecticide imidacloprid. Insect Biochem. Mol. Biol. 40:17–22
    [Google Scholar]
  104. 104. 
    Yixi Z, Liu Z, Han Z, Song F, Yao X et al. 2009. Functional co-expression of two insect nicotinic receptor subunits (Nlα3 and Nlα8) reveals the effects of a resistance-associated mutation (Nlα3Y151S) on neonicotinoid insecticides. J. Neurochem. 110:1855–62
    [Google Scholar]
  105. 105. 
    Zhang Y, Wang X, Yang B, Hu Y, Huang L et al. 2015. Reduction in mRNA and protein expression of a nicotinic acetylcholine receptor α8 subunit is associated with resistance to imidacloprid in the brown planthopper, Nilaparvata lugens. J. Neurochem. 135:686–94
    [Google Scholar]
  106. 106. 
    Byholm P, Makelainen S, Santangeli A, Goulson D 2018. First evidence of neonicotinoid residues in a long-distance migratory raptor, the European honey buzzard (Pernis apivorus). Sci. Total Environ. 639:929–33
    [Google Scholar]
  107. 107. 
    Han W, Tian Y, Shen X 2018. Human exposure to neonicotinoid insecticides and the evaluation of their potential toxicity: an overview. Chemosphere 192:59–65
    [Google Scholar]
  108. 108. 
    Hladik ML, Main AR, Goulson D 2018. Environmental risks and challenges associated with neonicotinoid insecticides. Environ. Sci. Technol. 52:3329–35
    [Google Scholar]
  109. 109. 
    Basley K, Goulson D. 2018. Neonicotinoids thiamethoxam and clothianidin adversely affect the colonisation of invertebrate populations in aquatic microcosms. Environ. Sci. Pollut. Res. Int. 25:9593–99
    [Google Scholar]
  110. 110. 
    Manjon C, Troczka BJ, Zaworra M, Beadle K, Randall E et al. 2018. Unravelling the molecular determinants of bee sensitivity to neonicotinoid insecticides. Curr. Biol. 28:1137–43.e5
    [Google Scholar]
  111. 111. 
    Troczka BJ, Homem RA, Reid R, Beadle K, Kohler M et al. 2019. Identification and functional characterisation of a novel N-cyanoamidine neonicotinoid metabolising cytochrome P450, CYP9Q6, from the buff-tailed bumblebee Bombus terrestris.Insect Biochem. Mol. Biol 111:103171
    [Google Scholar]
  112. 112. 
    Beadle K, Singh KS, Troczka BJ, Randall E, Zaworra M et al. 2019. Genomic insights into neonicotinoid sensitivity in the solitary bee Osmia bicornis. . PLOS Genet 15:e1007903
    [Google Scholar]
  113. 113. 
    Sumon KA, Ritika AK, Peeters E, Rashid H, Bosma RH et al. 2018. Effects of imidacloprid on the ecology of sub-tropical freshwater microcosms. Environ. Pollut. 236:432–41
    [Google Scholar]
  114. 114. 
    Bantz A, Camon J, Froger JA, Goven D, Raymond V 2018. Exposure to sublethal doses of insecticide and their effects on insects at cellular and physiological levels. Curr. Opin. Insect. Sci. 30:73–78
    [Google Scholar]
  115. 115. 
    Fournier-Level A, Good RT, Wilcox SA, Rane RV, Schiffer Met al. 2019. The spread of resistance to imidacloprid is restricted by thermotolerance in natural populations of Drosophila melanogaster. Nat. Ecol. Evol. 3:64756
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010818-021747
Loading
/content/journals/10.1146/annurev-pharmtox-010818-021747
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error