1932

Abstract

The concept of engineering robust protein scaffolds for novel binding functions emerged 20 years ago, one decade after the advent of recombinant antibody technology. Early examples were the Affibody, Monobody (Adnectin), and Anticalin proteins, which were derived from fragments of streptococcal protein A, from the tenth type III domain of human fibronectin, and from natural lipocalin proteins, respectively. Since then, this concept has expanded considerably, including many other protein templates. In fact, engineered protein scaffolds with useful binding specificities, mostly directed against targets of biomedical relevance, constitute an area of active research today, which has yielded versatile reagents as laboratory tools. However, despite strong interest from basic science, only a handful of those protein scaffolds have undergone biopharmaceutical development up to the clinical stage. This includes the abovementioned pioneering examples as well as designed ankyrin repeat proteins (DARPins). Here we review the current state and clinical validation of these next-generation therapeutics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-pharmtox-010818-021118
2020-01-06
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/pharmtox/60/1/annurev-pharmtox-010818-021118.html?itemId=/content/journals/10.1146/annurev-pharmtox-010818-021118&mimeType=html&fmt=ahah

Literature Cited

  1. 1. 
    Nygren , Uhlén M 1997. Scaffolds for engineering novel binding sites in proteins. Curr. Opin. Struct. Biol. 7:463–69
    [Google Scholar]
  2. 2. 
    Skerra A. 2000. Engineered protein scaffolds for molecular recognition. J. Mol. Recognit. 13:167–87
    [Google Scholar]
  3. 3. 
    Ulmer KM. 1983. Protein engineering. Science 219:6666–71
    [Google Scholar]
  4. 4. 
    Fersht AR, Shi J-P, Wilkinson AJ, Blow DM, Carter P et al. 1984. Analysis of enzyme structure and activity by protein engineering. Angew. Chem. Int. Edit. 23:467–73
    [Google Scholar]
  5. 5. 
    Skerra A. 1993. Bacterial expression of immunoglobulin fragments. Curr. Opin. Immunol. 5:256–62
    [Google Scholar]
  6. 6. 
    Winter G. 1998. Synthetic human antibodies and a strategy for protein engineering. FEBS Lett 430:92–94
    [Google Scholar]
  7. 7. 
    Kaplon H, Reichert JM. 2019. Antibodies to watch in 2019. MAbs 11:219–38
    [Google Scholar]
  8. 8. 
    Strohl WR, Strohl LM. 2012. Therapeutic Antibody Engineering: Current and Future Advances Driving the Strongest Growth Area in the Pharmaceutical Industry Cambridge, UK: Woodhead
  9. 9. 
    Markland W, Ley AC, Ladner RC 1996. Iterative optimization of high-affinity protease inhibitors using phage display. 2. Plasma kallikrein and thrombin. Biochemistry 35:8058–67
    [Google Scholar]
  10. 10. 
    Nord K, Nilsson J, Nilsson B, Uhlén M, Nygren 1995. A combinatorial library of an α-helical bacterial receptor domain. Protein Eng 8:601–8
    [Google Scholar]
  11. 11. 
    Nord K, Gunneriusson E, Ringdahl J, Ståhl S, Uhlén M, Nygren 1997. Binding proteins selected from combinatorial libraries of an α-helical bacterial receptor domain. Nat. Biotechnol. 15:772–77
    [Google Scholar]
  12. 12. 
    Koide A, Bailey CW, Huang X, Koide S 1998. The fibronectin type III domain as a scaffold for novel binding proteins. J. Mol. Biol. 284:1141–51
    [Google Scholar]
  13. 13. 
    Skerra A. 2000. Lipocalins as a scaffold. Biochim. Biophys. Acta 1482:337–50
    [Google Scholar]
  14. 14. 
    Beste G, Schmidt FS, Stibora T, Skerra A 1999. Small antibody-like proteins with prescribed ligand specificities derived from the lipocalin fold. PNAS 96:1898–903
    [Google Scholar]
  15. 15. 
    Schlehuber S, Beste G, Skerra A 2000. A novel type of receptor protein, based on the lipocalin scaffold, with specificity for digoxigenin. J. Mol. Biol. 297:1105–20
    [Google Scholar]
  16. 16. 
    Nixon AE, Sexton DJ, Ladner RC 2014. Drugs derived from phage display: from candidate identification to clinical practice. mAbs 6:73–85
    [Google Scholar]
  17. 17. 
    Owens B. 2017. Faster, deeper, smaller—the rise of antibody-like scaffolds. Nat. Biotechnol. 35:602–3
    [Google Scholar]
  18. 18. 
    Werner RG. 2004. Economic aspects of commercial manufacture of biopharmaceuticals. J. Biotechnol. 113:171–82
    [Google Scholar]
  19. 19. 
    Zhang P, Woen S, Wang T, Liau B, Zhao S et al. 2016. Challenges of glycosylation analysis and control: an integrated approach to producing optimal and consistent therapeutic drugs. Drug Discov. Today 21:740–65
    [Google Scholar]
  20. 20. 
    Xu Y, Wang D, Mason B, Rossomando T, Li N et al. 2019. Structure, heterogeneity and developability assessment of therapeutic antibodies. MAbs 11:239–64
    [Google Scholar]
  21. 21. 
    Holliger P, Hudson PJ. 2005. Engineered antibody fragments and the rise of single domains. Nat. Biotechnol. 23:1126–36
    [Google Scholar]
  22. 22. 
    Muyldermans S. 2013. Nanobodies: natural single-domain antibodies. Annu. Rev. Biochem. 82:775–97
    [Google Scholar]
  23. 23. 
    Binder U, Skerra A. 2015. Current strategies for pharmacokinetic optimization. Biobetters: Protein Engineering to Approach the Curative A Rosenberg, B Demeule 269–311 New York: Springer
    [Google Scholar]
  24. 24. 
    Brinkmann U, Kontermann RE. 2017. The making of bispecific antibodies. MAbs 9:182–212
    [Google Scholar]
  25. 25. 
    Hoos A. 2016. Development of immuno-oncology drugs—from CTLA4 to PD1 to the next generations. Nat. Rev. Drug. Discov. 15:235–47
    [Google Scholar]
  26. 26. 
    Schiefner A, Skerra A. 2015. The menagerie of human lipocalins: a natural protein scaffold for molecular recognition of physiological compounds. Acc. Chem. Res. 48:976–85
    [Google Scholar]
  27. 27. 
    Olson CA, Roberts RW. 2007. Design, expression, and stability of a diverse protein library based on the human fibronectin type III domain. Protein Sci 16:476–84
    [Google Scholar]
  28. 28. 
    Ultsch M, Braisted A, Maun HR, Eigenbrot C 2017. 3–2–1: structural insights from stepwise shrinkage of a three-helix Fc-binding domain to a single helix. Protein Eng. Des. Sel. 30:619–25
    [Google Scholar]
  29. 29. 
    Schiefner A, Chatwell L, Korner J, Neumaier I, Colby DW et al. 2011. A disulfide-free single-domain VL intrabody with blocking activity towards Huntingtin reveals a novel mode of epitope recognition. J. Mol. Biol. 414:337–55
    [Google Scholar]
  30. 30. 
    Sha F, Salzman G, Gupta A, Koide S 2017. Monobodies and other synthetic binding proteins for expanding protein science. Protein Sci 26:910–24
    [Google Scholar]
  31. 31. 
    Binz HK, Amstutz P, Plückthun A 2005. Engineering novel binding proteins from nonimmunoglobulin domains. Nat. Biotechnol. 23:1257–68
    [Google Scholar]
  32. 32. 
    Forrer P, Stumpp MT, Binz HK, Plückthun A 2003. A novel strategy to design binding molecules harnessing the modular nature of repeat proteins. FEBS Lett 539:2–6
    [Google Scholar]
  33. 33. 
    Gebauer M, Skerra A. 2009. Engineered protein scaffolds as next-generation antibody therapeutics. Curr. Opin. Chem. Biol. 13:245–55
    [Google Scholar]
  34. 34. 
    Gill DS, Damle NK. 2006. Biopharmaceutical drug discovery using novel protein scaffolds. Curr. Opin. Biotechnol. 17:653–58
    [Google Scholar]
  35. 35. 
    Hey T, Fiedler E, Rudolph R, Fiedler M 2005. Artificial, non-antibody binding proteins for pharmaceutical and industrial applications. Trends Biotechnol 23:514–22
    [Google Scholar]
  36. 36. 
    Mintz CS, Crea R. 2013. Protein scaffolds—the next generation of protein therapeutics?. BioProcess Int 11:40–48
    [Google Scholar]
  37. 37. 
    Nuttall SD, Walsh RB. 2008. Display scaffolds: protein engineering for novel therapeutics. Curr. Opin. Pharmacol. 8:609–15
    [Google Scholar]
  38. 38. 
    Wurch T, Pierré A, Depil S 2012. Novel protein scaffolds as emerging therapeutic proteins: from discovery to clinical proof-of-concept. Trends Biotechnol 30:575–82
    [Google Scholar]
  39. 39. 
    Gilbreth RN, Koide S. 2012. Structural insights for engineering binding proteins based on non-antibody scaffolds. Curr. Opin. Struct. Biol. 22:413–20
    [Google Scholar]
  40. 40. 
    Vazquez-Lombardi R, Phan TG, Zimmermann C, Lowe D, Jermutus L, Christ D 2015. Challenges and opportunities for non-antibody scaffold drugs. Drug Discov. Today 20:1271–83
    [Google Scholar]
  41. 41. 
    Gebauer M, Skerra A. 2019. Engineering of binding functions into proteins. Curr. Opin. Biotechnol 60:23041
    [Google Scholar]
  42. 42. 
    Skerra A. 2003. Imitating the humoral immune response. Curr. Opin. Chem. Biol. 7:683–93
    [Google Scholar]
  43. 43. 
    Richter A, Eggenstein E, Skerra A 2014. Anticalins: exploiting a non-Ig scaffold with hypervariable loops for the engineering of binding proteins. FEBS Lett 588:213–18
    [Google Scholar]
  44. 44. 
    Binder U, Matschiner G, Theobald I, Skerra A 2010. High-throughput sorting of an Anticalin library via EspP-mediated functional display on the Escherichia coli cell surface. J. Mol. Biol. 400:783–802
    [Google Scholar]
  45. 45. 
    Gai SA, Wittrup KD. 2007. Yeast surface display for protein engineering and characterization. Curr. Opin. Struct. Biol. 17:467–73
    [Google Scholar]
  46. 46. 
    Lipovsek D, Plückthun A. 2004. In-vitro protein evolution by ribosome display and mRNA display. J. Immunol. Methods 290:51–67
    [Google Scholar]
  47. 47. 
    Sidhu SS, Koide S. 2007. Phage display for engineering and analyzing protein interaction interfaces. Curr. Opin. Struct. Biol. 17:481–87
    [Google Scholar]
  48. 48. 
    Packer MS, Liu DR. 2015. Methods for the directed evolution of proteins. Nat. Rev. Genet. 16:379–94
    [Google Scholar]
  49. 49. 
    Friedrich L, Kornberger P, Mendler CT, Multhoff G, Schwaiger M, Skerra A 2018. Selection of an Anticalin® against the membrane form of Hsp70 via bacterial surface display and its theranostic application in tumour models. Biol. Chem. 399:235–52
    [Google Scholar]
  50. 50. 
    Gebauer M, Skerra A. 2012. Anticalins: small engineered binding proteins based on the lipocalin scaffold. Methods Enzymol 503:157–88
    [Google Scholar]
  51. 51. 
    D'Angelo S, Kumar S, Naranjo L, Ferrara F, Kiss C, Bradbury AR 2014. From deep sequencing to actual clones. Protein Eng. Des. Sel. 27:301–7
    [Google Scholar]
  52. 52. 
    Wang YM, Wang J, Hon YY, Zhou L, Fang L, Ahn HY 2016. Evaluating and reporting the immunogenicity impacts for biological products—a clinical pharmacology perspective. AAPS J 18:395–403
    [Google Scholar]
  53. 53. 
    Gokemeijer J, Jawa V, Mitra-Kaushik S 2017. How close are we to profiling immunogenicity risk using in silico algorithms and in vitro methods? An industry perspective. AAPS J 19:1587–92
    [Google Scholar]
  54. 54. 
    Nilsson B, Moks T, Jansson B, Abrahmsen L, Elmblad A et al. 1987. A synthetic IgG-binding domain based on staphylococcal protein A. Protein Eng 1:107–13
    [Google Scholar]
  55. 55. 
    De A, Kuppusamy G, Karri V 2018. Affibody molecules for molecular imaging and targeted drug delivery in the management of breast cancer. Int. J. Biol. Macromol. 107:906–19
    [Google Scholar]
  56. 56. 
    Frejd FY, Kim KT. 2017. Affibody molecules as engineered protein drugs. Exp. Mol. Med. 49:e306
    [Google Scholar]
  57. 57. 
    Ståhl S, Gräslund T, Karlström AE, Frejd FY, Nygren , Löfblom J 2017. Affibody molecules in biotechnological and medical applications. Trends Biotechnol 35:691–712
    [Google Scholar]
  58. 58. 
    Löfblom J, Feldwisch J, Tolmachev V, Carlsson J, Stahl S, Frejd FY 2010. Affibody molecules: engineered proteins for therapeutic, diagnostic and biotechnological applications. FEBS Lett 584:2670–80
    [Google Scholar]
  59. 59. 
    Wahlberg E, Lendel C, Helgstrand M, Allard P, Dincbas-Renqvist V et al. 2003. An affibody in complex with a target protein: structure and coupled folding. PNAS 100:3185–90
    [Google Scholar]
  60. 60. 
    Hoyer W, Grönwall C, Jonsson A, Ståhl S, Härd T 2008. Stabilization of a β-hairpin in monomeric Alzheimer's amyloid-β peptide inhibits amyloid formation. PNAS 105:5099–104
    [Google Scholar]
  61. 61. 
    Orr AA, Shaykhalishahi H, Mirecka EA, Jonnalagadda SVR, Hoyer W, Tamamis P 2018. Elucidating the multi-targeted anti-amyloid activity and enhanced islet amyloid polypeptide binding of β-wrapins. Comput. Chem. Eng. 116:322–32
    [Google Scholar]
  62. 62. 
    Krasniqi A, D'Huyvetter M, Devoogdt N, Frejd FY, Sorensen J et al. 2018. Same-day imaging using small proteins: clinical experience and translational prospects in oncology. J. Nucl. Med. 59:885–91
    [Google Scholar]
  63. 63. 
    Orlova A, Magnusson M, Eriksson TL, Nilsson M, Larsson B et al. 2006. Tumor imaging using a picomolar affinity HER2 binding affibody molecule. Cancer Res 66:4339–48
    [Google Scholar]
  64. 64. 
    Sörensen J, Sandberg D, Sandström M, Wennborg A, Feldwisch J et al. 2014. First-in-human molecular imaging of HER2 expression in breast cancer metastases using the 111In-ABY-025 affibody molecule. J. Nucl. Med. 55:730–35
    [Google Scholar]
  65. 65. 
    Sörensen J, Velikyan I, Sandberg D, Wennborg A, Feldwisch J et al. 2016. Measuring HER2-receptor expression in metastatic breast cancer using [68Ga]ABY-025 Affibody PET/CT. Theranostics 6:262–71
    [Google Scholar]
  66. 66. 
    Baum RP, Prasad V, Müller D, Schuchardt C, Orlova A et al. 2010. Molecular imaging of HER2-expressing malignant tumors in breast cancer patients using synthetic 111In- or 68Ga-labeled affibody molecules. J. Nucl. Med. 51:892–97
    [Google Scholar]
  67. 67. 
    Feldwisch J, Tolmachev V, Lendel C, Herne N, Sjoberg A et al. 2010. Design of an optimized scaffold for affibody molecules. J. Mol. Biol. 398:232–47
    [Google Scholar]
  68. 68. 
    Ahlgren S, Orlova A, Wållberg H, Hansson M, Sandström M et al. 2010. Targeting of HER2-expressing tumors using 111In-ABY-025, a second-generation affibody molecule with a fundamentally reengineered scaffold. J. Nucl. Med. 51:1131–38
    [Google Scholar]
  69. 69. 
    Malm M, Frejd FY, Ståhl S, Löfblom J 2016. Targeting HER3 using mono- and bispecific antibodies or alternative scaffolds. MAbs 8:1195–209
    [Google Scholar]
  70. 70. 
    Orlova A, Malm M, Rosestedt M, Varasteh Z, Andersson K et al. 2014. Imaging of HER3-expressing xenografts in mice using a 99mTc(CO)3-HEHEHE-ZHER3:08699 affibody molecule. Eur. J. Nucl. Med. Mol. Imaging 41:1450–59
    [Google Scholar]
  71. 71. 
    Rosestedt M, Andersson KG, Mitran B, Tolmachev V, Löfblom J et al. 2015. Affibody-mediated PET imaging of HER3 expression in malignant tumours. Sci. Rep. 5:15226
    [Google Scholar]
  72. 72. 
    Rinne SS, Leitao CD, Mitran B, Bass TZ, Andersson KG et al. 2019. Optimization of HER3 expression imaging using affibody molecules: influence of chelator for labeling with indium-111. Sci. Rep. 9:655
    [Google Scholar]
  73. 73. 
    Kraulis PJ, Jonasson P, Nygren , Uhlén M, Jendeberg L et al. 1996. The serum albumin-binding domain of streptococcal protein G is a three-helical bundle: a heteronuclear NMR study. FEBS Lett 378:190–94
    [Google Scholar]
  74. 74. 
    Lejon S, Frick IM, Bjorck L, Wikstrom M, Svensson S 2004. Crystal structure and biological implications of a bacterial albumin binding module in complex with human serum albumin. J. Biol. Chem. 279:42924–28
    [Google Scholar]
  75. 75. 
    Johansson MU, Frick IM, Nilsson H, Kraulis PJ, Hober S et al. 2002. Structure, specificity, and mode of interaction for bacterial albumin-binding modules. J. Biol. Chem. 277:8114–20
    [Google Scholar]
  76. 76. 
    Schlapschy M, Theobald I, Mack H, Schottelius M, Wester HJ, Skerra A 2007. Fusion of a recombinant antibody fragment with a homo-amino-acid polymer: effects on biophysical properties and prolonged plasma half-life. Protein Eng. Des. Sel. 20:273–84
    [Google Scholar]
  77. 77. 
    Jonsson A, Dogan J, Herne N, Abrahmsén L, Nygren P-Å 2008. Engineering of a femtomolar affinity binding protein to human serum albumin. Protein Eng. Des. Sel. 21:515–27
    [Google Scholar]
  78. 78. 
    Orlova A, Jonsson A, Rosik D, Lundqvist H, Lindborg M et al. 2013. Site-specific radiometal labeling and improved biodistribution using ABY-027, a novel HER2-targeting affibody molecule-albumin-binding domain fusion protein. J. Nucl. Med. 54:961–68
    [Google Scholar]
  79. 79. 
    Bass TZ, Rosestedt M, Mitran B, Frejd FY, Löfblom J et al. 2017. In vivo evaluation of a novel format of a bivalent HER3-targeting and albumin-binding therapeutic affibody construct. Sci. Rep. 7:43118
    [Google Scholar]
  80. 80. 
    Altai M, Leitao CD, Rinne SS, Vorobyeva A, Atterby C et al. 2018. Influence of molecular design on the targeting properties of ABD-fused mono- and bi-valent anti-HER3 Affibody therapeutic constructs. Cells 7:164
    [Google Scholar]
  81. 81. 
    Orlova A, Bass TZ, Rinne SS, Leitao CD, Rosestedt M et al. 2018. Evaluation of the therapeutic potential of a HER3-binding Affibody construct TAM-HER3 in comparison with a monoclonal antibody, seribantumab. Mol. Pharm. 15:3394–403
    [Google Scholar]
  82. 82. 
    Strömberg P, Berglund MM, Ekholm C, Su C, Sterky C et al. 2014. Development of Affibody® C5 inhibitors for versatile and efficient therapeutic targeting of the terminal complement pathway. Mol. Immunol. 61:256
    [Google Scholar]
  83. 83. 
    Berglund MM, Strömberg P. 2016. The clinical potential of Affibody-based inhibitors of C5 for therapeutic complement disruption. Expert Rev. Proteom. 13:241–43
    [Google Scholar]
  84. 84. 
    Ricklin D, Mastellos DC, Reis ES, Lambris JD 2018. The renaissance of complement therapeutics. Nat. Rev. Nephrol. 14:26–47
    [Google Scholar]
  85. 85. 
    Frejd FY, Klint S, Gudmundsdotter L, al. 2017. Blocking IL-17A with femtomolar affinity using the novel engineered Affibody ligand trap ABY-035: interim results from a phase I, first in human study Paper presented at the 26th EADV Congress Geneva, Switz: Sept 16
  86. 86. 
    Seijsing J, Yu S, Frejd FY, Hoiden-Guthenberg I, Gräslund T 2018. In vivo depletion of serum IgG by an affibody molecule binding the neonatal Fc receptor. Sci. Rep. 8:5141
    [Google Scholar]
  87. 87. 
    Power UF, Plotnicky-Gilquin H, Huss T, Robert A, Trudel M et al. 1997. Induction of protective immunity in rodents by vaccination with a prokaryotically expressed recombinant fusion protein containing a respiratory syncytial virus G protein fragment. Virology 230:155–66
    [Google Scholar]
  88. 88. 
    Hansson M, Nygren P-Å, Ståhl S 2000. Design and production of recombinant subunit vaccines. Biotechnol. Appl. Biochem. 32:95–107
    [Google Scholar]
  89. 89. 
    Nilvebrant J, Åstrand M, Georgieva-Kotseva M, Björnmalm M, Löfblom J, Hober S 2014. Engineering of bispecific affinity proteins with high affinity for ERBB2 and adaptable binding to albumin. PLOS ONE 9:e103094
    [Google Scholar]
  90. 90. 
    Garousi J, Lindbo S, Mitran B, Buijs J, Vorobyeva A et al. 2017. Comparative evaluation of tumor targeting using the anti-HER2 ADAPT scaffold protein labeled at the C-terminus with indium-111 or technetium-99m. Sci. Rep. 7:14780
    [Google Scholar]
  91. 91. 
    Lindbo S, Garousi J, Mitran B, Altai M, Buijs J et al. 2018. Radionuclide tumor targeting using ADAPT scaffold proteins: aspects of label positioning and residualizing properties of the label. J. Nucl. Med. 59:93–99
    [Google Scholar]
  92. 92. 
    Lindbo S, Garousi J, Mitran B, Vorobyeva A, Oroujeni M et al. 2018. Optimized molecular design of ADAPT-based HER2-imaging probes labeled with 111In and 68Ga. Mol. Pharm. 15:2674–83
    [Google Scholar]
  93. 93. 
    Nilvebrant J, Alm T, Hober S, Löfblom J 2011. Engineering bispecificity into a single albumin-binding domain. PLOS ONE 6:e25791
    [Google Scholar]
  94. 94. 
    Åstrand M, Nilvebrant J, Björnmalm M, Lindbo S, Hober S, Löfblom J 2016. Investigating affinity-maturation strategies and reproducibility of fluorescence-activated cell sorting using a recombinant ADAPT library displayed on staphylococci. Protein Eng. Des. Sel. 29:187–95
    [Google Scholar]
  95. 95. 
    Krizova L, Kuchar M, Petrokova H, Osicka R, Hlavnickova M et al. 2017. p19-targeted ABD-derived protein variants inhibit IL-23 binding and exert suppressive control over IL-23-stimulated expansion of primary human IL-17+ T-cells. Autoimmunity 50:102–13
    [Google Scholar]
  96. 96. 
    Löfblom J, Rosenstein R, Nguyen MT, Ståhl S, Götz F 2017. Staphylococcus carnosus: from starter culture to protein engineering platform. Appl. Microbiol. Biotechnol. 101:8293–307
    [Google Scholar]
  97. 97. 
    Åkerström B, Borregaard N, Flower DA, Salier J-S 2006. Lipocalins Georgetown, TX: Landes Bioscience
  98. 98. 
    Pervaiz S, Brew K. 1987. Homology and structure-function correlations between α1-acid glycoprotein and serum retinol-binding protein and its relatives. FASEB J 1:209–14
    [Google Scholar]
  99. 99. 
    Flower DR. 1996. The lipocalin protein family: structure and function. Biochem. J. 318:1–14
    [Google Scholar]
  100. 100. 
    Cowan SW, Newcomer ME, Jones TA 1990. Crystallographic refinement of human serum retinol binding protein at 2Å resolution. Proteins 8:44–61
    [Google Scholar]
  101. 101. 
    Newcomer ME, Jones TA, Aqvist J, Sundelin J, Eriksson U et al. 1984. The three-dimensional structure of retinol-binding protein. EMBO J 3:1451–54
    [Google Scholar]
  102. 102. 
    Rothe C, Skerra A. 2018. Anticalin® proteins as therapeutic agents in human diseases. BioDrugs 32:233–43
    [Google Scholar]
  103. 103. 
    Gunnarsson R, Åkerstrom B, Hansson SR, Gram M 2017. Recombinant alpha-1-microglobulin: a potential treatment for preeclampsia. Drug Discov. Today 22:736–43
    [Google Scholar]
  104. 104. 
    Åkerström B, Rosenlof L, Hagerwall A, Rutardottir S, Ahlstedt J et al. 2018. rA1M-035, a physicochemically improved human recombinant α1-microglobulin, has therapeutic effects in rhabdomyolysis-induced acute kidney injury. Antioxid. Redox Signal. 30:489–504
    [Google Scholar]
  105. 105. 
    Meining W, Skerra A. 2012. The crystal structure of human α1-microglobulin reveals a potential haem-binding site. Biochem. J. 445:175–82
    [Google Scholar]
  106. 106. 
    A1M Pharma 2018. Swedish Medical Products Agency grants A1M Pharma permission to start a clinical Phase I study of ROSgard™ Press Release, Novemb. 9
  107. 107. 
    Mizoguchi M, Nakatsuji M, Takano J, Ishibashi O, Wada K, Inui T 2016. Development of pH-independent drug release formulation using lipocalin-type prostaglandin D synthase. J. Pharm. Sci. 105:2735–42
    [Google Scholar]
  108. 108. 
    Teraoka Y, Kume S, Lin Y, Atsuji S, Inui T 2017. Comprehensive evaluation of the binding of lipocalin-type prostaglandin D synthase to poorly water-soluble drugs. Mol. Pharm. 14:3558–67
    [Google Scholar]
  109. 109. 
    Mori K, Lee HT, Rapoport D, Drexler IR, Foster K et al. 2005. Endocytic delivery of lipocalin-siderophore-iron complex rescues the kidney from ischemia-reperfusion injury. J. Clin. Investig. 115:610–21
    [Google Scholar]
  110. 110. 
    Yan C, Yuanjie T, Zhengqun X, Jiayan C, Kongdan L 2018. Neutrophil gelatinase-associated lipocalin attenuates ischemia/reperfusion injury in an in vitro model via autophagy activation. Med. Sci. Monit. 24:479–85
    [Google Scholar]
  111. 111. 
    Jore MM, Johnson S, Sheppard D, Barber NM, Li YI et al. 2016. Structural basis for therapeutic inhibition of complement C5. Nat. Struct. Mol. Biol. 23:378–86
    [Google Scholar]
  112. 112. 
    Akari Therapeutics 2019. CAPSTONE (ongoing) and planned ASSET (future) clinical trials. Akari Therapeutics https://www.akaritx.com/phn-phase-ii-iii
    [Google Scholar]
  113. 113. 
    Goodship THJ, Pinto F, Weston-Davies WH, Silva J, Nishimura JI et al. 2017. Use of the complement inhibitor Coversin to treat HSCT-associated TMA. Blood Adv 1:1254–58
    [Google Scholar]
  114. 114. 
    Gille H, Hülsmeyer M, Trentmann S, Matschiner G, Christian HJ et al. 2016. Functional characterization of a VEGF-A-targeting Anticalin, prototype of a novel therapeutic human protein class. Angiogenesis 19:79–94
    [Google Scholar]
  115. 115. 
    Hohlbaum AM, Gille H, Trentmann S, Kolodziejczyk M, Rattenstetter B et al. 2018. Sustained plasma hepcidin suppression and iron elevation by Anticalin-derived hepcidin antagonist in cynomolgus monkey. Br. J. Pharmacol. 175:1054–65
    [Google Scholar]
  116. 116. 
    Kato M, He L, McGuire K, Dishy V, Zamora CA 2018. A randomized, placebo controlled, single ascending dose study to assess the safety, PK and PD of DS-9001a, a novel small biologic PCSK9 inhibitor, in healthy subjects Paper presented at the Annual Meeting of the American Society for Clinical Pharmacology and Therapeutics Orlando, FL:
  117. 117. 
    Masuda Y, Yamaguchi S, Suzuki C, Aburatani T, Nagano Y et al. 2018. Generation and characterization of a novel small biologic alternative to proprotein convertase subtilisin/kexin type 9 (PCSK9) antibodies, DS-9001a, albumin binding domain-fused Anticalin protein. J. Pharmacol. Exp. Ther. 365:368–78
    [Google Scholar]
  118. 118. 
    Anderson GP, Hohlbaum A, Jensen K, Bähre A, Gille H 2015. Discovery of PRS-060, an inhalable CD123/IL4Ra/TH2 blocking anti-asthmatic anticalin protein re-engineered from endogenous lipocalin-1. Eur. Respir. J. 46:OA3256
    [Google Scholar]
  119. 119. 
    Albrecht V, Richter A, Pfeiffer S, Gebauer M, Lindner S et al. 2016. Anticalins directed against the fibronectin extra domain B as diagnostic tracers for glioblastomas. Int. J. Cancer 138:1269–80
    [Google Scholar]
  120. 120. 
    Schiefner A, Gebauer M, Richter A, Skerra A 2018. Anticalins reveal high plasticity in the mode of complex formation with a common tumor antigen. Structure 26:649–56
    [Google Scholar]
  121. 121. 
    Richter A, Skerra A. 2017. Anticalins directed against vascular endothelial growth factor receptor 3 (VEGFR-3) with picomolar affinities show potential for medical therapy and in vivo imaging. Biol. Chem. 398:39–55
    [Google Scholar]
  122. 122. 
    Hinner MJ, Aiba R-SB, Wiedenmann A, Schlosser C, Allersdorfer A et al. 2015. Costimulatory T cell engagement via a novel bispecific anti-CD137/anti-HER2 protein. J. Immunother. Cancer 3:Suppl. 2P187
    [Google Scholar]
  123. 123. 
    Pieris Pharmaceuticals 2018. Pieris Pharmaceuticals announces dosing of first patient in phase I combination trial for PRS-343 plus anti-PD-L1 immunotherapy Press Release, Sept. 4. https://www.pieris.com/news-and-events/press-releases/detail/600/pieris-pharmaceuticals-announces-dosing-of-first-patient-in
  124. 124. 
    Kim HJ, Eichinger A, Skerra A 2009. High-affinity recognition of lanthanide(III) chelate complexes by a reprogrammed human lipocalin 2. J. Am. Chem. Soc. 131:3565–76
    [Google Scholar]
  125. 125. 
    Rauth S, Hinz D, Börger M, Uhrig M, Mayhaus M et al. 2016. High-affinity Anticalins with aggregation-blocking activity directed against the Alzheimer β-amyloid peptide. Biochem. J. 473:1563–78
    [Google Scholar]
  126. 126. 
    Barkovskiy M, Ilyukhina E, Dauner M, Eichinger A, Skerra A 2019. An engineered lipocalin that tightly complexes the plant poison colchicine for use as antidote as well as bioanalytical applications. Biol. Chem. 400:351–66
    [Google Scholar]
  127. 127. 
    Dauner M, Eichinger A, Lucking G, Scherer S, Skerra A 2018. Reprogramming human siderocalin to neutralize petrobactin, the essential iron scavenger of anthrax bacillus. Angew. Chem. Int. Ed. 57:14619–23
    [Google Scholar]
  128. 128. 
    Edwardraja S, Eichinger A, Theobald I, Sommer CA, Reichert AJ, Skerra A 2017. Rational design of an anticalin-type sugar-binding protein using a genetically encoded boronate side chain. ACS Synth. Biol. 6:2241–47
    [Google Scholar]
  129. 129. 
    Hohenester E, Engel J. 2002. Domain structure and organisation in extracellular matrix proteins. Matrix Biol 21:115–28
    [Google Scholar]
  130. 130. 
    Xu L, Aha P, Gu K, Kuimelis RG, Kurz M et al. 2002. Directed evolution of high-affinity antibody mimics using mRNA display. Chem. Biol. 9:933–42
    [Google Scholar]
  131. 131. 
    Hackel BJ, Kapila A, Wittrup KD 2008. Picomolar affinity fibronectin domains engineered utilizing loop length diversity, recursive mutagenesis, and loop shuffling. J. Mol. Biol. 381:1238–52
    [Google Scholar]
  132. 132. 
    Hackel BJ, Ackerman ME, Howland SW, Wittrup KD 2010. Stability and CDR composition biases enrich binder functionality landscapes. J. Mol. Biol. 401:84–96
    [Google Scholar]
  133. 133. 
    Koide A, Wojcik J, Gilbreth RN, Hoey RJ, Koide S 2012. Teaching an old scaffold new tricks: monobodies constructed using alternative surfaces of the FN3 scaffold. J. Mol. Biol. 415:393–405
    [Google Scholar]
  134. 134. 
    Ramamurthy V, Krystek SR Jr, Bush A, Wei A, Emanuel SL et al. 2012. Structures of adnectin/protein complexes reveal an expanded binding footprint. Structure 20:259–69
    [Google Scholar]
  135. 135. 
    Lipovsek D. 2011. Adnectins: engineered target-binding protein therapeutics. Protein Eng. Des. Sel. 24:3–9
    [Google Scholar]
  136. 136. 
    Jacobs SA, Diem MD, Luo J, Teplyakov A, Obmolova G et al. 2012. Design of novel FN3 domains with high stability by a consensus sequence approach. Protein Eng. Des. Sel. 25:107–17
    [Google Scholar]
  137. 137. 
    Diem MD, Hyun L, Yi F, Hippensteel R, Kuhar E et al. 2014. Selection of high-affinity Centyrin FN3 domains from a simple library diversified at a combination of strand and loop positions. Protein Eng. Des. Sel. 27:419–29
    [Google Scholar]
  138. 138. 
    Goldberg SD, Cardoso RM, Lin T, Spinka-Doms T, Klein D et al. 2016. Engineering a targeted delivery platform using Centyrins. Protein Eng. Des. Sel. 29:563–72
    [Google Scholar]
  139. 139. 
    Bloom L, Calabro V. 2009. FN3: A new protein scaffold reaches the clinic. Drug Discov. Today 14:949–55
    [Google Scholar]
  140. 140. 
    Oliver H. 2017. Monobodies as possible next-generation protein therapeutics—a perspective. Swiss. Med. Wkly. 147:w14545
    [Google Scholar]
  141. 141. 
    Khan JA, Camac DM, Low S, Tebben AJ, Wensel DL et al. 2015. Developing Adnectins that target SRC co-activator binding to PXR: a structural approach toward understanding promiscuity of PXR. J. Mol. Biol. 427:924–42
    [Google Scholar]
  142. 142. 
    Cetin M, Evenson WE, Gross GG, Jalali-Yazdi F, Krieger D et al. 2017. RasIns: genetically encoded intrabodies of activated Ras proteins. J. Mol. Biol. 429:562–73
    [Google Scholar]
  143. 143. 
    Gross GG, Junge JA, Mora RJ, Kwon HB, Olson CA et al. 2013. Recombinant probes for visualizing endogenous synaptic proteins in living neurons. Neuron 78:971–85
    [Google Scholar]
  144. 144. 
    Chen TF, Li KK, Zhu EF, Opel CF, Kauke MJ et al. 2018. Artificial anti-tumor opsonizing proteins with fibronectin scaffolds engineered for specificity to each of the murine FcγR types. J. Mol. Biol. 430:1786–98
    [Google Scholar]
  145. 145. 
    Zhang D, Whitaker B, Derebe MG, Chiu ML 2018. FcγRII-binding Centyrins mediate agonism and antibody-dependent cellular phagocytosis when fused to an anti-OX40 antibody. MAbs 10:463–75
    [Google Scholar]
  146. 146. 
    Dineen SP, Sullivan LA, Beck AW, Miller AF, Carbon JG et al. 2008. The Adnectin CT-322 is a novel VEGF receptor 2 inhibitor that decreases tumor burden in an orthotopic mouse model of pancreatic cancer. BMC Cancer 8:352
    [Google Scholar]
  147. 147. 
    Mamluk R, Carvajal IM, Morse BA, Wong H, Abramowitz J et al. 2010. Anti-tumor effect of CT-322 as an adnectin inhibitor of vascular endothelial growth factor receptor-2. MAbs 2:199–208
    [Google Scholar]
  148. 148. 
    Tolcher AW, Sweeney CJ, Papadopoulos K, Patnaik A, Chiorean EG et al. 2011. Phase I and pharmacokinetic study of CT-322 (BMS-844203), a targeted Adnectin inhibitor of VEGFR-2 based on a domain of human fibronectin. Clin. Cancer Res. 17:363–71
    [Google Scholar]
  149. 149. 
    Schiff D, Kesari S, de Groot J, Mikkelsen T, Drappatz J et al. 2015. Phase 2 study of CT-322, a targeted biologic inhibitor of VEGFR-2 based on a domain of human fibronectin, in recurrent glioblastoma. Investig. New Drugs 33:247–53
    [Google Scholar]
  150. 150. 
    Sachdev E, Gong J, Rimel B, Mita M 2015. Adnectin-targeted inhibitors: rationale and results. Curr. Oncol. Rep. 17:35
    [Google Scholar]
  151. 151. 
    Aghaabdollahian S, Ahangari Cohan R, Norouzian D, Davami F, Asadi Karam MR et al. 2019. Enhancing bioactivity, physicochemical, and pharmacokinetic properties of a nano-sized, anti-VEGFR2 Adnectin, through PASylation technology. Sci. Rep. 9:2978
    [Google Scholar]
  152. 152. 
    Madireddi M, Malone H, Kukral D, Chimalakonda A, Kozhich A et al. 2016. BMS-986089 is a high affinity anti-myostatin adnectin that increases muscle volume in three preclinical species. Neuromuscul. Disord. 26:S95
    [Google Scholar]
  153. 153. 
    Jacobsen L, Bechtold C, Tirucherai G, Ahlijanian M, Luo F 2016. BMS-986089: a novel adnectin protein that dose dependently lowers free myostatin and increases muscle volume and lean body mass. Neuromuscul. Disord. 26:S95
    [Google Scholar]
  154. 154. 
    Niemeijer AN, Leung D, Huisman MC, Bahce I, Hoekstra OS et al. 2018. Whole body PD-1 and PD-L1 positron emission tomography in patients with non-small-cell lung cancer. Nat. Commun. 9:4664
    [Google Scholar]
  155. 155. 
    Das Gupta R. 2014. Preclinical development of an anti-IL-23 Adnectin and advancement into the clinic Paper presented at IBC's 9th Annual Next Generation Protein Therapeutics Summit San Francisco, CA:
  156. 156. 
    Klöhn PC, Wuellner U, Zizlsperger N, Zhou Y, Tavares D et al. 2013. IBC's 23rd Annual Antibody Engineering, 10th Annual Antibody Therapeutics international conferences and the 2012 Annual Meeting of The Antibody Society: December 3–6, 2012, San Diego, CA. mAbs 5:178–201
    [Google Scholar]
  157. 157. 
    Mitchell T, Chao G, Sitkoff D, Lo F, Monshizadegan H et al. 2014. Pharmacologic profile of the Adnectin BMS-962476, a small protein biologic alternative to PCSK9 antibodies for low-density lipoprotein lowering. J. Pharmacol. Exp. Ther. 350:412–24
    [Google Scholar]
  158. 158. 
    Stein EA, Kasichayanula S, Turner T, Kranz T, Arumugam U et al. 2014. LDL cholesterol reduction with BMS-962476, an adnectin inhibitor of PCSK9: results of a single ascending dose study. J. Am. Coll. Cardiol. 63:Suppl. 12A1372
    [Google Scholar]
  159. 159. 
    Mullard A. 2017. Nine paths to PCSK9 inhibition. Nat. Rev. Drug. Discov. 16:299–301
    [Google Scholar]
  160. 160. 
    Wensel D, Sun Y, Li Z, Zhang S, Picarillo C et al. 2017. Discovery and characterization of a novel CD4-binding Adnectin with potent anti-HIV activity. Antimicrob. Agents Chemother. 61:e00508–17
    [Google Scholar]
  161. 161. 
    Han X, Cinay GE, Zhao Y, Guo Y, Zhang X, Wang P 2017. Adnectin-based design of chimeric antigen receptor for T cell engineering. Mol. Ther. 25:2466–76
    [Google Scholar]
  162. 162. 
    Grove TZ, Cortajarena AL, Regan L 2008. Ligand binding by repeat proteins: natural and designed. Curr. Opin. Struct. Biol. 18:507–15
    [Google Scholar]
  163. 163. 
    Mosavi LK, Cammett TJ, Desrosiers DC, Peng ZY 2004. The ankyrin repeat as molecular architecture for protein recognition. Protein Sci 13:1435–48
    [Google Scholar]
  164. 164. 
    Mosavi LK, Minor DL Jr, Peng ZY 2002. Consensus-derived structural determinants of the ankyrin repeat motif. PNAS 99:16029–34
    [Google Scholar]
  165. 165. 
    Plückthun A. 2015. Designed ankyrin repeat proteins (DARPins): binding proteins for research, diagnostics, and therapy. Annu. Rev. Pharmacol. Toxicol. 55:489–511
    [Google Scholar]
  166. 166. 
    Boersma YL. 2018. Advances in the application of designed ankyrin repeat proteins (DARPins) as research tools and protein therapeutics. Methods Mol. Biol. 1798:307–27
    [Google Scholar]
  167. 167. 
    Stefan N, Martin-Killias P, Wyss-Stoeckle S, Honegger A, Zangemeister-Wittke U, Plückthun A 2011. DARPins recognizing the tumor-associated antigen EpCAM selected by phage and ribosome display and engineered for multivalency. J. Mol. Biol. 413:826–43
    [Google Scholar]
  168. 168. 
    Stahl A, Stumpp MT, Schlegel A, Ekawardhani S, Lehrling C et al. 2013. Highly potent VEGF-A-antagonistic DARPins as anti-angiogenic agents for topical and intravitreal applications. Angiogenesis 16:101–11
    [Google Scholar]
  169. 169. 
    Zahnd C, Pecorari F, Straumann N, Wyler E, Plückthun A 2006. Selection and characterization of Her2 binding-designed ankyrin repeat proteins. J. Biol. Chem. 281:35167–75
    [Google Scholar]
  170. 170. 
    Zahnd C, Wyler E, Schwenk JM, Steiner D, Lawrence MC et al. 2007. A designed ankyrin repeat protein evolved to picomolar affinity to Her2. J. Mol. Biol. 369:1015–28
    [Google Scholar]
  171. 171. 
    Zahnd C, Kawe M, Stumpp MT, de Pasquale C, Tamaskovic R et al. 2010. Efficient tumor targeting with high-affinity designed ankyrin repeat proteins: effects of affinity and molecular size. Cancer Res 70:1595–605
    [Google Scholar]
  172. 172. 
    Moody P, Chudasama V, Nathani RI, Maruani A, Martin S et al. 2014. A rapid, site-selective and efficient route to the dual modification of DARPins. Chem. Commun. 50:4898–900
    [Google Scholar]
  173. 173. 
    Simon M, Frey R, Zangemeister-Wittke U, Plückthun A 2013. Orthogonal assembly of a designed ankyrin repeat protein-cytotoxin conjugate with a clickable serum albumin module for half-life extension. Bioconjug. Chem. 24:1955–66
    [Google Scholar]
  174. 174. 
    Simon M, Stefan N, Borsig L, Plückthun A, Zangemeister-Wittke U 2014. Increasing the antitumor effect of an EpCAM-targeting fusion toxin by facile click PEGylation. Mol. Cancer Ther. 13:375–85
    [Google Scholar]
  175. 175. 
    Steiner D, Merz FW, Sonderegger I, Gulotti-Georgieva M, Villemagne D et al. 2017. Half-life extension using serum albumin-binding DARPin® domains. Protein Eng. Des. Sel. 30:583–91
    [Google Scholar]
  176. 176. 
    Binz HK, Bakker TR, Phillips DJ, Cornelius A, Zitt C et al. 2017. Design and characterization of MP0250, a tri-specific anti-HGF/anti-VEGF DARPin® drug candidate. MAbs 9:1262–69
    [Google Scholar]
  177. 177. 
    Azaro A, Rodon J, Middleton MR, Baird RD, Herrmann R et al. 2018. First-in-class phase I study evaluating MP0250, a VEGF and HGF neutralizing DARPIN molecule, in patients with advanced solid tumors. J. Clin. Oncol. 36:2520
    [Google Scholar]
  178. 178. 
    Fiedler U, Ekawardhani S, Cornelius A, Gilboy P, Bakker TR et al. 2017. MP0250, a VEGF and HGF neutralizing DARPin® molecule shows high anti-tumor efficacy in mouse xenograft and patient-derived tumor models. Oncotarget 8:98371–83
    [Google Scholar]
  179. 179. 
    Rao L, De Veirman K, Giannico D, Saltarella I, Desantis V et al. 2018. Targeting angiogenesis in multiple myeloma by the VEGF and HGF blocking DARPin® protein MP0250: a preclinical study. Oncotarget 9:13366–81
    [Google Scholar]
  180. 180. 
    Kiemle-Kallee J, Fiedler U, Dawson KM, Haunschild J, Dietschy S et al. 2018. MP0250, a VEGF- and HGF-blocking multi-DARPin drug candidate, in combination with tyrosine-kinase-inhibitors targeting EGFR-mutated NSCLC: preclinical rationale and phase Ib/II study outline. Cancer Res 78: (Suppl. 13):CT149 (Abstr.)
    [Google Scholar]
  181. 181. 
    Molecular Partners 2018. Positive phase 3 efficacy data for abicipar, ongoing clinical trials for MP0250 in oncology and further advancement of I/O pipeline Press Release, Novemb. 1. https://www.molecularpartners.com/positive-phase-3-efficacy-data-for-abicipar-ongoing-clinical-trials-for-mp0250-in-oncology-and-further-advancement-of-io-pipeline/
  182. 182. 
    Baird R, Omlin A, Kiemle-Kallee J, Fiedler U, Zitt C et al. 2018. MP0274-CP101: a phase 1, first-in-human, single-arm, multi-center, open-label, dose escalation study to assess safety, tolerability, and pharmacokinetics of MP0274 in patients with advanced HER2-positive solid tumors. Cancer Res 78: (Suppl. 4):OT1-03-2 (Abstr.)
    [Google Scholar]
  183. 183. 
    Fiedler U, Metz C, Zitt C, Bessey R, Béhé M et al. 2017. Pre-clinical antitumor activity, tumor localization, and pharmacokinetics of MP0274, an apoptosis inducing, biparatopic HER2-targeting DARPin®. Cancer Res 77: (Suppl. 4):P-21-18 (Abstr.)
    [Google Scholar]
  184. 184. 
    Smithwick E, Stewart MW. 2017. Designed ankyrin repeat proteins: a look at their evolving use in medicine with a focus on the treatment of chorioretinal vascular disorders. Antiinflamm. Antiallergy Agents Med. Chem. 16:33–45
    [Google Scholar]
  185. 185. 
    Stewart MW. 2018. Extended duration vascular endothelial growth factor inhibition in the eye: failures, successes, and future possibilities. Pharmaceutics 10:21
    [Google Scholar]
  186. 186. 
    Campochiaro PA, Channa R, Berger BB, Heier JS, Brown DM et al. 2013. Treatment of diabetic macular edema with a designed ankyrin repeat protein that binds vascular endothelial growth factor: a phase I/II study. Am. J. Ophthalmol. 155:697–704
    [Google Scholar]
  187. 187. 
    Callanan D, Kunimoto D, Maturi RK, Patel SS, Staurenghi G et al. 2018. Double-masked, randomized, phase 2 evaluation of abicipar pegol (an anti-VEGF DARPin therapeutic) in neovascular age-related macular degeneration. J. Ocul. Pharmacol. Ther. 34:700–9
    [Google Scholar]
  188. 188. 
    Kunimoto D, Ohji M, Maturi RK, Sekiryu T, Wang Y et al. 2019. Evaluation of abicipar pegol (an anti-VEGF DARPin therapeutic) in patients with neovascular age-related macular degeneration: studies in Japan and the United States. Ophthalmic Surg. Lasers Imaging Retina 50:e10–e22
    [Google Scholar]
  189. 189. 
    PipelineReview 2019. Allergan and Molecular Partners announce topline safety results from MAPLE study of abicipar pegol PipelineReview, April 3. https://pipelinereview.com/index.php/2019040370942/Proteins-and-Peptides/Allergan-and-Molecular-Partners-Announce-Topline-Safety-Results-from-MAPLE-study-of-Abicipar-pegol.html
  190. 190. 
    Molecular Partners 2018. Molecular Partners and Amgen announce strategic collaboration in immuno-oncology Press Release, Dec. 19. https://www.molecularpartners.com/molecular-partners-and-amgen-announce-strategic-collaboration-in-immuno-oncology/
  191. 191. 
    Wu YF, Batyuk A, Honegger A, Brandl F, Mittl PRE, Plückthun A 2017. Rigidly connected multispecific artificial binders with adjustable geometries. Sci. Rep. 7:11217
    [Google Scholar]
  192. 192. 
    Tiede C, Bedford R, Heseltine SJ, Smith G, Wijetunga I et al. 2017. Affimer proteins are versatile and renewable affinity reagents. eLife 6:e24903
    [Google Scholar]
  193. 193. 
    Dias A, Roque ACA. 2017. The future of protein scaffolds as affinity reagents for purification. Biotechnol. Bioeng. 114:481–91
    [Google Scholar]
  194. 194. 
    Romao E, Morales-Yanez F, Hu Y, Crauwels M, De Pauw P et al. 2016. Identification of useful nanobodies by phage display of immune single domain libraries derived from camelid heavy chain antibodies. Curr. Pharm. Des. 22:6500–18
    [Google Scholar]
  195. 195. 
    Konning D, Zielonka S, Grzeschik J, Empting M, Valldorf B et al. 2017. Camelid and shark single domain antibodies: structural features and therapeutic potential. Curr. Opin. Struct. Biol. 45:10–16
    [Google Scholar]
  196. 196. 
    Sheridan C. 2019. Llama-inspired antibody fragment approved for rare blood disorder. Nat. Biotechnol. 37:333–34
    [Google Scholar]
  197. 197. 
    Bartunek J, Barbato E, Heyndrickx G, Vanderheyden M, Wijns W, Holz JB 2013. Novel antiplatelet agents: ALX-0081, a nanobody directed towards von Willebrand factor. J. Cardiovasc. Transl. Res. 6:355–63
    [Google Scholar]
  198. 198. 
    Kratz F, Elsadek B. 2012. Clinical impact of serum proteins on drug delivery. J. Control. Release 161:429–45
    [Google Scholar]
  199. 199. 
    Teplyakov A, Malia TJ, Obmolova G, Jacobs SA, O'Neil KT, Gilliland GL 2017. Conformational flexibility of an anti-IL-13 DARPin. Protein Eng. Des. Sel. 30:31–37
    [Google Scholar]
  200. 200. 
    Jost C, Schilling J, Tamaskovic R, Schwill M, Honegger A, Plückthun A 2013. Structural basis for eliciting a cytotoxic effect in HER2-overexpressing cancer cells via binding to the extracellular domain of HER2. Structure 21:1979–91
    [Google Scholar]
  201. 201. 
    Cao L, Wang W, Jiang Q, Wang C, Knossow M, Gigant B 2014. The structure of apo-kinesin bound to tubulin links the nucleotide cycle to movement. Nat. Commun. 5:5364
    [Google Scholar]
  202. 202. 
    Reckel S, Gehin C, Tardivon D, Georgeon S, Kukenshoner T et al. 2017. Structural and functional dissection of the DH and PH domains of oncogenic Bcr-Abl tyrosine kinase. Nat. Commun. 8:2101
    [Google Scholar]
  203. 203. 
    Koide A, Abbatiello S, Rothgery L, Koide S 2002. Probing protein conformational changes in living cells by using designer binding proteins: application to the estrogen receptor. PNAS 99:1253–58
    [Google Scholar]
  204. 204. 
    Lindborg M, Dubnovitsky A, Olesen K, Bjorkman T, Abrahmsen L et al. 2013. High-affinity binding to staphylococcal protein A by an engineered dimeric Affibody molecule. Protein Eng. Des. Sel. 26:635–44
    [Google Scholar]
  205. 205. 
    Wang H, Vilela M, Winkler A, Tarnawski M, Schlichting I et al. 2016. LOVTRAP: an optogenetic system for photoinduced protein dissociation. Nat. Methods 13:755–58
    [Google Scholar]
  206. 206. 
    Eigenbrot C, Ultsch M, Dubnovitsky A, Abrahmsén L, Härd T 2010. Structural basis for high-affinity HER2 receptor binding by an engineered protein. PNAS 107:15039–44
    [Google Scholar]
  207. 207. 
    Schönfeld D, Matschiner G, Chatwell L, Trentmann S, Gille H et al. 2009. An engineered lipocalin specific for CTLA-4 reveals a combining site with structural and conformational features similar to antibodies. PNAS 106:8198–203
    [Google Scholar]
/content/journals/10.1146/annurev-pharmtox-010818-021118
Loading
/content/journals/10.1146/annurev-pharmtox-010818-021118
Loading

Data & Media loading...

Supplemental Material

Supplementary Data

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error