1932

Abstract

Metal films of nanoscale thickness, deposited on substrates and exposed to laser heating, provide systems that involve several interesting multiphysics effects. In addition to fluid mechanical aspects associated with a free boundary setup, other relevant physical effects include phase change, thermal flow, and liquid–solid interactions. Such films are challenging to model, in particular because inertial effects may be relevant, and large contact angles require care when considering the long-wave formulation. Applications of nanoscale metal films are numerous, and the materials science community is actively pursuing more complex setups involving templated films and substrates, bimetallic films and alloys, and a variety of elemental film geometries. The goal of this review is to discuss our current understanding of thin metal film systems, while also providing an overview of the challenges in this research area, which stands at the intersection of fluid mechanics, materials science, and thermal physics.

Loading

Article metrics loading...

/content/journals/10.1146/annurev-fluid-010719-060340
2020-01-05
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/fluid/52/1/annurev-fluid-010719-060340.html?itemId=/content/journals/10.1146/annurev-fluid-010719-060340&mimeType=html&fmt=ahah

Literature Cited

  1. Afkhami S, Kondic L 2013. Numerical simulation of ejected molten metal nanoparticles liquified by laser irradiation: interplay of geometry and dewetting. Phys. Rev. Lett. 111:034501
    [Google Scholar]
  2. Afkhami S, Zaleski S, Bussmann M 2009. A mesh-dependent model for applying dynamic contact angles to VOF simulations. J. Comput. Phys. 228:5370–89
    [Google Scholar]
  3. Ahmmed MS, Huda N 2018. A detailed study on melting dynamics influenced by the pulse laser-induced transient heating. Thermal Sci. Eng. Prog. 7:54–60
    [Google Scholar]
  4. Ajaev VS 2013. Instability and rupture of thin liquid films on solid substrates. Interfacial Phenom. Heat Transf. 1:81–92
    [Google Scholar]
  5. Ajaev VS, Willis DA 2003. Thermocapillary flow and rupture in films of molten metal on a substrate. Phys. Fluids 15:3144–50
    [Google Scholar]
  6. Andreotti B, Snoeijer JH 2020. Statics and dynamics of soft wetting. Annu. Rev. Fluid Mech. 52:285–308
    [Google Scholar]
  7. Arnold W, Hunklinger S, Dransfeld K 1979. Influence of optical absorption on the van der Waals interaction between solids. Phys. Rev. B 19:6049–56
    [Google Scholar]
  8. Atena A, Khenner M 2009. Thermocapillary effects in driven dewetting and self assembly of pulsed-laser-irradiated metallic films. Phys. Rev. B 80:075402
    [Google Scholar]
  9. Bao Y, Guérout R, Lussange J, Lambrecht A, Cirelli RA et al. 2010. Casimir force on a surface with shallow nanoscale corrugations: geometry and finite conductivity effects. Phys. Rev. Lett. 105:250402
    [Google Scholar]
  10. Batič , Verbovšek T, Šetina J 2017. Decomposition of thin Au films on flat and structured Si substrate by annealing. Vacuum 138:134–38
    [Google Scholar]
  11. Becker J, Grün G, Seemann R, Mantz H, Jacobs K et al. 2003. Complex dewetting scenarios captured by thin-film models. Nat. Mat. 2:59–63
    [Google Scholar]
  12. Beliatis MJ, Henley SJ, Silva SRP 2011. Engineering the plasmon resonance of large area bimetallic nanoparticle films by laser nanostructuring for chemical sensors. Opt. Lett. 36:1362–64
    [Google Scholar]
  13. Bestehorn M, Merkt D 2006. Regular surface patterns on Rayleigh-Taylor unstable evaporating films heated from below. Phys. Rev. Lett. 97:12780
    [Google Scholar]
  14. Bischof J, Scherer D, Herminghaus S, Leiderer P 1996. Dewetting modes of thin metallic films: nucleation of holes and spinodal dewetting. Phys. Rev. Lett. 77:1536–39
    [Google Scholar]
  15. Bonn D, Eggers J, Indekeu J, Meunier J, Rolley E 2009. Wetting and spreading. Rev. Mod. Phys. 81:739–805
    [Google Scholar]
  16. Bray AJ 2002. Theory of phase-ordering kinetics. Adv. Phys. 51:481–87
    [Google Scholar]
  17. Briant AJ, Wagner AJ, Yeomans JM 2004. Lattice Boltzmann simulations of contact line motion. I. Liquid-gas systems. Phys. Rev. E 69:031602
    [Google Scholar]
  18. Burelbach JP, Bankoff SG, Davis SH 1988. Nonlinear stability of evaporating/condensing liquid films. J. Fluid Mech. 195:463–94
    [Google Scholar]
  19. Butt HJ, Kappl M 2010. Surface and Interfacial Forces Weinheim, Ger.: Wiley-VCH Verlag
    [Google Scholar]
  20. Censabella M, Ruffino F, Zimbone M, Bruno E, Grimaldi MG 2018. Self-organization based fabrication of bimetallic PtPd nanoparticles on transparent conductive oxide substrates. Phys. Status Solidi A 215:1700524
    [Google Scholar]
  21. Chan HB, Bao Y, Zou J, Cirelli RA, Klemens F et al. 2008. Measurement of the Casimir force between a gold sphere and a silicon surface with nanoscale trench arrays. Phys. Rev. Lett. 101:030401
    [Google Scholar]
  22. Chen F, Klimchitskaya GL, Mostepanenko VM, Mohideen U 2007. Control of the Casimir force by the modification of dielectric properties with light. Phys. Rev. B 76:035338
    [Google Scholar]
  23. Colinet P, Legros JC, Velarde MG 2001. Nonlinear Dynamics of Surface-Tension-Driven Instabilities Berlin: Wiley-VCH
    [Google Scholar]
  24. Craster R, Matar O 2009. Dynamics and stability of thin liquid films. Rev. Mod. Phys. 81:1131–98
    [Google Scholar]
  25. Cuellar I, Ravazzoli PD, Diez JA, González AG 2017. Drop pattern resulting from the breakup of a bidimensional grid of liquid filaments. Phys. Fluids 29:102103
    [Google Scholar]
  26. Cuellar I, Ravazzoli PD, Diez JA, González AG, Roberts NA et al. 2018. Self-assembly of a drop pattern from a two-dimensional grid of nanometric metallic filaments. Phys. Rev. E 98:043101
    [Google Scholar]
  27. Dai X, Zhou S, Wang M, Lei J, Xie M et al. 2017. Effect of substrate types on the microstructure and properties of Cu65Fe35 composite coatings by laser induction hybrid cladding. J. Alloys Compd. 722:173–82
    [Google Scholar]
  28. Das SK, Puri S, Horbach J, Binder K 2006. Spinodal decomposition in thin films: molecular-dynamics simulations of a binary Lennard-Jones fluid mixture. Phys. Rev. E 73:031604
    [Google Scholar]
  29. Derjaguin B, Leonov L, Roldughin V 1985. Disjoining pressure in liquid metallic films. J. Colloid Interface Sci. 108:207–14
    [Google Scholar]
  30. Diez JA, González AG, Fernández R 2016. Metallic-thin-film instability with spatially correlated thermal noise. Phys. Rev. E 93:013120
    [Google Scholar]
  31. Diez JA, González AG, Kondic L 2009. On the breakup of fluid rivulets. Phys. Fluids 21:082105
    [Google Scholar]
  32. Diez JA, Kondic L 2007. On the breakup of fluid films of finite and infinite extent. Phys. Fluids 19:072107
    [Google Scholar]
  33. Dong N, Kondic L 2016. Instability of nanometric fluid films on a thermally conductive substrate. Phys. Rev. Fluids 1:063901
    [Google Scholar]
  34. Driessen T, Jeurissen R, Wijshoff H, Toschi F, Lohse D 2013. Stability of viscous long liquid filaments. Phys. Fluids 25:062109
    [Google Scholar]
  35. Favazza C, Kalyanaraman R, Sureshkumar R 2006a. Robust nanopatterning by laser-induced dewetting of metal nanofilms. Nanotechnology 17:4229–34
    [Google Scholar]
  36. Favazza C, Trice J, Krishna H, Kalyanaraman R, Sureshkumar R 2006b. Laser-induced short- and long-range orderings of Co nanoparticles on SiO2. Appl. Phys. Lett. 88:153118
    [Google Scholar]
  37. Fetzer R, Jacobs K, Münch A, Wagner B, Witelski TP 2005. New slip regimes and the shape of dewetting thin liquid films. Phys. Rev. Lett. 95:127801
    [Google Scholar]
  38. Font F, Afkhami S, Kondic L 2017. Substrate melting during laser heating of nanoscale metal films. Int. J. Heat Mass Transf. 113:237–45
    [Google Scholar]
  39. Fowlkes JD, Horton S, Fuentes-Cabrera M, Rack PD 2012a. Signatures of the Rayleigh-Plateau instability revealed by imposing synthetic perturbations on nanometer-sized liquid metals on substrates. Angew. Chem. Int. Ed. 51:8768–72
    [Google Scholar]
  40. Fowlkes JD, Kondic L, Diez JA, Gonzalez AG, Wu Y 2012b. Parallel assembly of particles and wires on substrates by dictating instability evolution in liquid metal films. Nanoscale 4:7376–82
    [Google Scholar]
  41. Fowlkes JD, Kondic L, Diez JA, Rack PD 2011. Self-assembly versus directed assembly of nanoparticles via pulsed laser induced dewetting of patterned metal films. Nano Lett. 11:2478–85
    [Google Scholar]
  42. Fowlkes JD, Roberts NA, Wu Y, Diez JA, González AG et al. 2014. Hierarchical nanoparticle ensembles synthesized by liquid phase directed self-assembly. Nano Lett. 14:774–82
    [Google Scholar]
  43. Francois MM, Cummins SJ, Dendy ED, Kothe DB, Sicilian JM, Williams MW 2006. A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework. J. Comput. Phys. 213:141–73
    [Google Scholar]
  44. Fuentes-Cabrera M, Rhodes BH, Baskes M, Terrones H, Fowlkes J 2011a. Controlling the velocity of jumping nanodroplets via their initial shape and temperature. ACS Nano 5:7130–36
    [Google Scholar]
  45. Fuentes-Cabrera M, Rhodes BH, Fowlkes JD, López-Benzanilla A, Terrones H 2011b. Molecular dynamics study of the dewetting of copper on graphite and graphene: implications for nanoscale self-assembly. Phys. Rev. E 83:041603
    [Google Scholar]
  46. Garcia H, Sachan R, Kalyanaraman R 2012. Plasmon properties of Co-Ag nanocomposites within the mean-field approximation. Plasmonics 7:137–41
    [Google Scholar]
  47. Garnett EC, Brongersma ML, Cui Y, McGehee MD 2011. Nanowire solar cells. Annu. Rev. Mat. Res. 41:269–95
    [Google Scholar]
  48. Glasner KB, Witelski TP 2003. Coarsening dynamics of dewetting films. Phys. Rev. E 67:016302
    [Google Scholar]
  49. Gonzalez AG, Diez JA, Kondic L 2013. Stability of a liquid ring on a substrate. J. Fluid Mech. 718:246–79
    [Google Scholar]
  50. González AG, Diez JA, Sellier M 2016. Inertial and dimensional effects on the instability of a thin film. J. Fluid Mech. 787:449–73
    [Google Scholar]
  51. González AG, Diez JA, Wu Y, Fowlkes JD, Rack PD, Kondic L 2013. Instability of liquid Cu films on a SiO2 substrate. Langmuir 29:9378–87
    [Google Scholar]
  52. Guan YF, Pearce RC, Melechko AV, Hensley DK, Simpson ML, Rack PD 2008. Pulsed laser dewetting of nickel catalyst for carbon nanofiber growth. Nanotechnology 19:235604
    [Google Scholar]
  53. Gurevich EL 2011. Self-organized nanopatterns in thin layers of superheated liquid metals. Phys. Rev. E 83:031604
    [Google Scholar]
  54. Habenicht A, Olapinski M, Burmeister F, Leiderer P, Boneberg J 2005. Jumping nanodroplets. Science 309:2043–45
    [Google Scholar]
  55. Hartnett CA, Mahady K, Fowlkes JD, Afkhami S, Kondic L, Rack PD 2015. Instability of nano- and microscale liquid metal filaments: transition from single droplet collapse to multidroplet breakup. Langmuir 31:13609–17
    [Google Scholar]
  56. Hartnett CA, Seric I, Mahady K, Kondic L, Afkhami S et al. 2017. Exploiting the Marangoni effect to initiate instabilities and direct the assembly of liquid metal filaments. Langmuir 33:8123–28
    [Google Scholar]
  57. Herminghaus S, Jacobs K, Mecke K, Bischof J, Fery A et al. 1998. Spinodal dewetting in liquid crystal and liquid metal films. Science 282:916–19
    [Google Scholar]
  58. Hughes RA, Menumerov E, Neretina S 2017. When lithography meets self-assembly: a review of recent advances in the directed assembly of complex metal nanostructures on planar and textured surfaces. Nanotechnology 28:282002
    [Google Scholar]
  59. Inui N 2007. Change in the Casimir force between semiconductive bodies by irradiation. J. Phys. Conf. Ser. 89:012018
    [Google Scholar]
  60. Israelachvili JN 1992. Intermolecular and Surface Forces New York: Academic. 2nd ed.
    [Google Scholar]
  61. Jacobs K, Seemann R, Herminghaus S 2008. Stability and dewetting of thin liquid films. Polymer Thin Films OKC Tsui, TP Russell 243–65 Hackensack, NJ: World Sci.
    [Google Scholar]
  62. Jacqmin J 2000. Contact-line dynamics of a diffuse fluid interface. J. Fluid Mech. 402:57–88
    [Google Scholar]
  63. Jacqmin J 2004. Onset of wetting failure in liquid–liquid systems. J. Fluid Mech. 517:209–28
    [Google Scholar]
  64. Khenner M, Yadavali S, Kalyanaraman R 2011. Formation of organized nanostructures from unstable bilayers of thin metallic liquids. Phys. Fluids 23:122105
    [Google Scholar]
  65. Klimchitskaya GL, Mohideen U, Mostepanenko VM 2009. The Casimir force between real materials: experiment and theory. Rev. Mod. Phys. 81:1827–85
    [Google Scholar]
  66. Kondic L, Diez JA, Rack PD, Guan Y, Fowlkes JD 2009. Nanoparticle assembly via the dewetting of patterned thin metal lines: understanding the instability mechanisms. Phys. Rev. E 79:026302
    [Google Scholar]
  67. Krishna H, Sachan R, Strader J, Favazza C, Khenner M, Kalyanaraman R 2010. Thickness-dependent spontaneous dewetting morphology of ultrathin Ag films. Nanotechnology 21:155601
    [Google Scholar]
  68. Krishna H, Shirato N, Favazza C, Kalyanaraman R 2009. Energy driven self-organization in nanoscale metallic liquid films. Phys. Chem. Chem. Phys. 11:8136–43
    [Google Scholar]
  69. Krishna H, Shirato N, Yadavali S, Sachan R, Strader J, Kalyanaraman R 2011. Self–organization of nanoscale multilayer liquid metal films: experiment and theory. ACS Nano 5:470–76
    [Google Scholar]
  70. Kuchmizhak A, Gurbatov S, Vitrik O, Kulchin Y, Milichko V et al. 2016. Ion-beam assisted laser fabrication of sensing plasmonic nanostructures. Sci. Rep. 6:19410
    [Google Scholar]
  71. Lam MAYH, Cummings LJ, Kondic L 2018a. Computing dynamics of thin films via large scale GPU-based simulations. J. Comput. Phys. X 1:100001
    [Google Scholar]
  72. Lam MAYH, Cummings LJ, Kondic L 2018b. Stability of thin fluid films characterised by a complex form of effective disjoining pressure. J. Fluid Mech. 841:925–61
    [Google Scholar]
  73. Landau LD, Lifshitz E 1980. Statistical Physics, Part 2 Oxford: Pergamon
    [Google Scholar]
  74. Lee T, Liu L 2010. Lattice Boltzmann simulations of micron-scale drop impact on dry surfaces. J. Comput. Phys. 229:8045–63
    [Google Scholar]
  75. Lorenz P, Klöppel M, Frost F, Ehrhardt M, Zimmer K, Li P 2013. Laser-induced circular nanostructures in fused silica assisted by a self-assembling chromium layer. Appl. Surface Sci. 280:933–39
    [Google Scholar]
  76. Lowengrub J, Truskinovsky L 1998. Quasi-incompressible Cahn–Hilliard fluids and topological transitions. Proc. R. Soc. Lond. A 454:2617–54
    [Google Scholar]
  77. Mahady K, Afkhami S, Diez J, Kondic L 2013. Comparison of Navier–Stokes simulations with long-wave theory: study of wetting and dewetting. Phys. Fluids 25:112103
    [Google Scholar]
  78. Mahady K, Afkhami S, Kondic L 2015a. A volume of fluid method for simulating fluid/fluid interfaces in contact with solid boundaries. J. Comput. Phys. 294:243–57
    [Google Scholar]
  79. Mahady K, Afkhami S, Kondic L 2015b. On the influence of initial geometry on the evolution of fluid filaments. Phys. Fluids 27:092104
    [Google Scholar]
  80. Mahady K, Afkhami S, Kondic L 2016. A numerical approach for the direct computation of flows including fluid-solid interaction: modeling contact angle, film rupture, and dewetting. Phys. Fluids 28:062002
    [Google Scholar]
  81. Makarov SV, Milichko VA, Mukhin IS, Shishkin II, Zuev DA et al. 2016. Controllable femtosecond laser-induced dewetting for plasmonic applications. Laser Photonics Rev. 10:91–99
    [Google Scholar]
  82. McKeown JT, Roberts NA, Fowlkes JD, Wu Y, LaGrange T et al. 2012. Real-time observation of nanosecond liquid-phase assembly of nickel nanoparticles via pulsed-laser heating. Langmuir 28:17168–75
    [Google Scholar]
  83. McKeown JT, Wu Y, Fowlkes JD, Rack PD, Campbell GH 2015. Simultaneous in-situ synthesis and characterization of Co@Cu core-shell nanoparticle arrays. Adv. Mater. 27:61060–65
    [Google Scholar]
  84. Mitlin VS 1994. On dewetting conditions. Colloids Surf. 89:97–101
    [Google Scholar]
  85. Mitlin VS 2000. Dewetting revisited: new asymtotics of the film stability diagram and the metastable regime of nucleation and growth of dry zones. J. Colloid Interface Sci. 227:371–79
    [Google Scholar]
  86. Mokkapati S, Catchpole KR 2012. Nanophotonic light trapping in solar cells. J. Appl. Phys. 112:101101
    [Google Scholar]
  87. Münch A, Wagner B 2005. Contact-line instability of dewetting thin films. Physica D 209:178–90
    [Google Scholar]
  88. Náraigh LO, Thiffeault JL 2010. Nonlinear dynamics of phase separation in thin films. Nonlinearity 23:1559–83
    [Google Scholar]
  89. Nesic S, Cuerno R, Moro E, Kondic L 2015. Dynamics of thin fluid films controlled by thermal fluctuations. Phys. Rev. E 92:061002(R)
    [Google Scholar]
  90. Nguyen TD, Fuentes-Cabrera M, Fowlkes JD, Diez JA, González AG et al. 2012. Competition between collapse and breakup in nanometer-sized thin rings using molecular dynamics and continuum modeling. Langmuir 28:13960–67
    [Google Scholar]
  91. Nguyen TD, Fuentes-Cabrera M, Fowlkes JD, Rack P 2014. Coexistence of spinodal instability and thermal nucleation in thin-film rupture: insights from molecular levels. Phys. Rev. E 89:032403
    [Google Scholar]
  92. Oh H, Lee J, Lee M 2018. Transformation of silver nanowires into nanoparticles by Rayleigh instability: comparison between laser irradiation and heat treatment. Appl. Surf. Sci. 427:65–73
    [Google Scholar]
  93. Oh Y, Lee J, Lee M 2018. Fabrication of Ag-Au bimetallic nanoparticles by laser-induced dewetting of bilayer films. Appl. Surf. Sci. 434:1293–99
    [Google Scholar]
  94. Oron A, Davis SH, Bankoff SG 1997. Long-scale evolution of thin liquid films. Rev. Mod. Phys. 69:931–80
    [Google Scholar]
  95. Parsegian VA 2006. Van der Waals Forces Cambridge, UK: Cambridge Univ. Press
    [Google Scholar]
  96. Popinet S 2009. An accurate adaptive solver for surface-tension-driven interfacial flows. J. Comput. Phys. 228:5838–66
    [Google Scholar]
  97. Powers TR, Goldstein RE 1997. Pearling and pinching: propagation of Rayleigh instabilities. Phys. Rev. Lett. 78:2555–58
    [Google Scholar]
  98. Powers TR, Zhang D, Goldstein RE, Stone HA 1998. Propagation of a topological transition: the Rayleigh instability. Phys. Fluids 10:1052–57
    [Google Scholar]
  99. Rack PD, Guan Y, Fowlkes JD, Melechko AV, Simpson ML 2008. Pulsed laser dewetting of patterned thin metal films: a means of directed assembly. Appl. Phys. Lett. 92:223108
    [Google Scholar]
  100. Ratautas K, Gedvilas M, Raciukaitis G, Grigonis A 2012. Nanoparticle formation after nanosecond-laser irradiation of thin gold films. J. Appl. Phys. 112:013108
    [Google Scholar]
  101. Reinhardt H, Kim HC, Pietzonka C 2013. Self-organization of multifunctional surfaces—the fingerprints on a complex system. Adv. Mat. 25:3313–18
    [Google Scholar]
  102. Renardy Y, Renardy M 2002. PROST: a parabolic reconstruction of surface tension for the volume-of-fluid method. J. Comput. Phys. 183:400–21
    [Google Scholar]
  103. Roberts NA, Fowlkes JD, Mahady K, Afkhami S, Kondic L, Rack P 2013. Directed assembly of one- and two-dimensional nanoparticle arrays from pulsed laser induced dewetting of square waveforms. ACS Appl. Mater. Interfaces 5:4450–56
    [Google Scholar]
  104. Ross FM 2010. Controlling nanowire structures through real time growth studies. Rep. Prog. Phys. 73:114501
    [Google Scholar]
  105. Ruffino F, Gentile A, Zimbone M, Piccitto G, Reitano R, Grimaldi MG 2016. Size-selected Au nanoparticles on FTO substrate: controlled synthesis by the Rayleigh-Taylor instability and optical properties. Superlattices Microstruct. 100:418–30
    [Google Scholar]
  106. Ruffino F, Pugliara A, Carria E, Bongiorno C, Spinella C, Grimaldi MG 2012a. Formation of nanoparticles from laser irradiated Au thin film on SiO2/Si: elucidating the Rayleigh instability role. Mater. Lett. 84:27–30
    [Google Scholar]
  107. Ruffino F, Pugliara A, Carria E, Romano L, Bongiorno C 2012b. Towards a laser fluence dependent nanostructuring of thin Au films on Si by nanosecond laser irradiation. Appl. Surf. Sci. 258:9128–37
    [Google Scholar]
  108. Sachan R, Malasi A, Ge J, Yadavali S, Krishna H et al. 2014. Ferroplasmons: intense localized surface plasmons in metal-ferromagnetic nanoparticles. ACS Nano 8:9790–98
    [Google Scholar]
  109. Sachan R, Yadavali D, Shirato N, Krishna H, Ramos V et al. 2012. Self-organized bimetallic Ag-Co nanoparticles with tunable localized surface plasmons showing high environmental stability and sensitivity. Nanotechnology 23:275604
    [Google Scholar]
  110. Schwartz LW 1998. Hysteretic effects in droplet motion on heterogenous substrates: direct numerical simulation. Langmuir 14:3440–53
    [Google Scholar]
  111. Seemann R, Herminghaus S, Jacobs K 2001. Dewetting patterns and molecular forces: a reconciliation. Phys. Rev. Lett. 86:5534–37
    [Google Scholar]
  112. Seric I, Afkhami S, Kondic L 2018a. Direct numerical simulation of variable surface tension flows using a volume-of-fluid method. J. Comput. Phys. 352:615–36
    [Google Scholar]
  113. Seric I, Afkhami S, Kondic L 2018b. Influence of thermal effects on stability of nanoscale films and filaments on thermally conductive substrates. Phys. Fluids 30:012109
    [Google Scholar]
  114. Sharma A, Verma R 2004. Pattern formation and dewetting in thin films of liquids showing complete macroscale wetting: from “pancakes” to “swiss cheese.”. Langmuir 20:10337–45
    [Google Scholar]
  115. Sibley D, Nold A, Kalliadasis S 2013. Unifying binary fluid diffuse-interface models in the sharp interface limit. J. Fluid Mech. 736:5–43
    [Google Scholar]
  116. Snoeijer JH 2006. Free-surface flows with large slope: beyond lubrication theory. Phys. Fluids 18:021701
    [Google Scholar]
  117. Spelt PD 2005. A level-set approach for simulations of flows with multiple moving contact lines with hysteresis. J. Comput. Phys. 207:389–404
    [Google Scholar]
  118. Sussman M, Almgren AS, Bell JB, Colella P, Howell LH, Welcome ML 1999. An adaptive level set approach for incompressible two-phase flows. J. Comput. Phys. 148:81–124
    [Google Scholar]
  119. Sussman M, Ohta M 2009. A stable and efficient method for treating surface tension in incompressible two-phase flow. SIAM J. Sci. Comput. 31:2447–71
    [Google Scholar]
  120. Thiele U, Madruga S, Frastia L 2007. Decomposition driven interface evolution for layers of binary mixtures. I. Model derivation and stratified base states. Phys. Fluids 19:122106
    [Google Scholar]
  121. Thompson CV 2012. Solid-state dewetting of thin films. Annu. Rev. Mater. Res. 42:399–434
    [Google Scholar]
  122. Trice J, Thomas D, Favazza C, Sureshkumar R, Kalyanaraman R 2007. Pulsed-laser-induced dewetting in nanoscopic metal films: theory and experiments. Phys. Rev. B 75:235439
    [Google Scholar]
  123. Trice J, Thomas D, Favazza C, Sureshkumar R, Kalyanaraman R 2008. Novel self-organization mechanism in ultrathin liquid films: theory and experiment. Phys. Rev. Lett. 101:017802
    [Google Scholar]
  124. Vogel T, Dodel G, Holzhauer E, Salzmann H, Theurer A 1992. High-speed switching of far-infrared radiation by photoionization in a semiconductor. Appl. Opt. 31:329–37
    [Google Scholar]
  125. Wilczek M, Tewes W, Engelnkemper S, Gurevich SV, Thiele U 2017. Sliding drops: ensemble statistics from single drop bifurcations. Phys. Rev. Lett. 119:204501
    [Google Scholar]
  126. Williams MB, Davis SH 1982. Nonlinear theory of film rupture. J. Colloid Interface Sci. 90:220–28
    [Google Scholar]
  127. Wu Y, Dong N, Fu S, Fowlkes J, Kondic L et al. 2014. Directed liquid phase assembly of highly ordered metallic nanoparticle arrays. ACS Appl. Mater. Interfaces 6:5835–43
    [Google Scholar]
  128. Wu Y, Fowlkes JD, Rack PD 2011a. The optical properties of Cu-Ni nanoparticles produced via pulsed laser dewetting of ultrathin films: the effect of nanoparticle size and composition on the plasmon response. J. Mater. Res. 26:277–87
    [Google Scholar]
  129. Wu Y, Fowlkes JD, Rack PD, Diez JA, Kondic L 2010. On the breakup of patterned nanoscale copper rings into droplets via pulsed-laser-induced dewetting: competing liquid-phase instability and transport mechanisms. Langmuir 26:11972–79
    [Google Scholar]
  130. Wu Y, Fowlkes JD, Roberts NA, Diez JA, Kondic L 2011b. Competing liquid phase instabilities during pulsed laser induced self-assembly of copper rings into ordered nanoparticle arrays on SiO2. . Langmuir 27:13314–23
    [Google Scholar]
  131. Wu Y, Li G, Cherqui C, Bigelow NW, Thakkar N et al. 2016. Electron energy loss spectroscopy study of the full plasmonic spectrum of self-assembled Au-Ag alloy nanoparticles: unraveling size, composition, and substrate effects. ACS Photonics 3:130–38
    [Google Scholar]
  132. Xia Q, Chou S 2009. The fabrication of periodic metal nanodot arrays through pulsed laser melting induced fragmentation of metal nanogratings. Nanotechnology 20:285310
    [Google Scholar]
  133. Yadavali S, Kalyanaraman R 2014. Nanomaterials synthesis by a novel phenomenon: the nanoscale Rayleigh–Taylor instability. AIP Adv. 4:047116
    [Google Scholar]
  134. Ye J, Zuev D, Makarov S 2018. Dewetting mechanisms and their exploitation for the large-scale fabrication of advanced nanophotonic systems. Int. Mater. Rev. 64:439–77
    [Google Scholar]
  135. Zhao C, Sprittles JE, Lockerby DA 2019. Revisiting the Rayleigh–Plateau instability for the nanoscale. J. Fluid Mech. 861:R3
    [Google Scholar]
/content/journals/10.1146/annurev-fluid-010719-060340
Loading
/content/journals/10.1146/annurev-fluid-010719-060340
Loading

Data & Media loading...

  • Article Type: Review Article
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error