Issue 2, 2020

Hydrocortisone/cyclodextrin complex electrospun nanofibers for a fast-dissolving oral drug delivery system

Abstract

The electrospinning of hydrocortisone/cyclodextrin complex nanofibers was performed in order to develop a fast-dissolving oral drug delivery system. Hydrocortisone is a water-insoluble hydrophobic drug, yet, the water solubility of hydrocortisone was significantly enhanced by inclusion complexation with hydroxypropyl-beta-cyclodextrin (HP-β-CyD). In this study, hydrocortisone/HP-β-CyD complexes were prepared in aqueous solutions having molar ratios of 1/1, 1/1.5 and 1/2 (hydrocortisone/HP-β-CyD). Highly concentrated aqueous solutions of HP-β-CyD (180%, w/v) were used for hydrocortisone/HP-β-CyD systems (1/1, 1/1.5 and 1/2) in order to perform electrospinning without the use of an additional polymer matrix. The turbidity of hydrocortisone/HP-β-CyD (1/1 and 1/1.5) aqueous solutions indicated the presence of some uncomplexed crystals of hydrocortisone whereas the aqueous solution of hydrocortisone/HP-β-CyD (1/2) was homogeneous indicating that hydrocortisone becomes totally water-soluble by inclusion complexation with HP-β-CyD. Nonetheless, the electrospinning of hydrocortisone/HP-β-CyD systems (1/1, 1/1.5 and 1/2) successfully yielded defect-free uniform nanofibrous structures. Moreover, the electrospinning process was quite efficient that hydrocortisone was completely preserved without any loss yielding hydrocortisone/HP-β-CyD nanofibers having the initial molar ratios (1/1, 1/1.5 and 1/2). The structural and thermal characterization of the hydrocortisone/HP-β-CyD nanofibers revealed that hydrocortisone was totally inclusion complexed with HP-β-CyD and was in the amorphous state in hydrocortisone/HP-β-CyD (1/2) nanofibers whereas some uncomplexed crystalline hydrocortisone was present in hydrocortisone/HP-β-CyD (1/1 and 1/1.5) nanofibers. Nevertheless, hydrocortisone/HP-β-CyD (1/1, 1/1.5 and 1/2) complex aqueous systems were electrospun in the form of nanofibrous webs having a free-standing and flexible nature. The hydrocortisone/HP-β-CyD (1/1, 1/1.5 and 1/2) nanofibrous webs have shown fast-dissolving behavior in water or when they were in contact with artificial saliva. Yet, the hydrocortisone/HP-β-CyD (1/2) nanofibrous web dissolved more quickly than the hydrocortisone/HP-β-CyD (1/1 and 1/1.5) nanofibrous webs due to the full inclusion complexation and the amorphous state of hydrocortisone in this sample. In short, the results suggest that polymer-free electrospun nanofibrous webs produced from hydrocortisone/HP-β-CyD could be quite applicable for fast-dissolving oral drug delivery systems.

Graphical abstract: Hydrocortisone/cyclodextrin complex electrospun nanofibers for a fast-dissolving oral drug delivery system

Supplementary files

Article information

Article type
Research Article
Submitted
06 Aug 2019
Accepted
07 Oct 2019
First published
08 Jan 2020

RSC Med. Chem., 2020,11, 245-258

Hydrocortisone/cyclodextrin complex electrospun nanofibers for a fast-dissolving oral drug delivery system

A. Celebioglu and T. Uyar, RSC Med. Chem., 2020, 11, 245 DOI: 10.1039/C9MD00390H

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements