Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Technical Reviews
  • Published:

Cosmological simulations of galaxy formation

Abstract

Over recent decades, cosmological simulations of galaxy formation have been instrumental in advancing our understanding of structure and galaxy formation in the Universe. These simulations follow the nonlinear evolution of galaxies, modelling a variety of physical processes over an enormous range of time and length scales. A better understanding of the relevant physical processes, improved numerical methods and increased computing power have led to simulations that can reproduce a large number of the observed galaxy properties. Modern simulations model dark matter, dark energy and ordinary matter in an expanding space-time starting from well-defined initial conditions. The modelling of ordinary matter is most challenging due to the large array of physical processes affecting this component. Cosmological simulations have also proven useful to study alternative cosmological models and their impact on the galaxy population. This Technical Review presents a concise overview of the methodology of cosmological simulations of galaxy formation and their different applications.

Key points

  • The formation of structures and galaxies in the Universe, which consists of ordinary matter, dark energy and dark matter, involves various physical processes such as gravity, gas cooling, star formation, supernova feedback, supermassive black hole feedback, stellar evolution, radiation, magnetic fields, cosmic rays and more.

  • Cosmological simulations allow detailed studies of the formation and evolution of structures and galaxies in the cosmos, starting from smooth initial conditions constrained through observations of the cosmic microwave background, yielding detailed predictions of the galaxy population at different epochs of the Universe.

  • The dark matter component is typically numerically modelled through the N-body approach. Here, the dark matter phase-space distribution is sampled by an ensemble of phase-space sampling points, resulting in a Monte Carlo scheme, to follow its dynamics, which are governed by the collisionless Boltzmann equation.

  • The gas content of the baryonic matter component is, in its simplest form, described through the Euler equations, discretized with Eulerian, Lagrangian or arbitrary Lagrangian–Eulerian schemes, coupled to other physical processes such as gravity, cooling processes, feedback processes and star formation.

  • Alternative forms of dark matter, dark energy and gravity can also be explored through suitable modified simulation methods to test and constrain such theories in the context of structure and galaxy formation, by comparing to observational data such as galaxy surveys, leading to important insights into the overall cosmological framework of structure formation and cosmological parameters.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Visual representations of some selected structure and galaxy formation simulations.
Fig. 2: Overview of the key ingredients of cosmological simulations.

Similar content being viewed by others

References

  1. Somerville, R. S. & Davé, R. Physical models of galaxy formation in a cosmological framework. Annu. Rev. Astron. Astrophys. 53, 51–113 (2015).

    ADS  Google Scholar 

  2. Naab, T. & Ostriker, J. P. Theoretical challenges in galaxy formation. Annu. Rev. Astron. Astrophys. 55, 59–109 (2017).

    ADS  Google Scholar 

  3. Planck Collaboration et al. Planck 2015 results. XIII. Cosmological parameters. Astron. Astrophys. 594, A13 (2016).

    Google Scholar 

  4. Seljak, U. & Zaldarriaga, M. A line-of-sight integration approach to cosmic microwave background anisotropies. Astrophys. J. 469, 437 (1996).

    ADS  Google Scholar 

  5. Peacock, J. A. The evolution of galaxy clustering. Mon. Not. R. Astron. Soc. 284, 885–898 (1997).

    ADS  Google Scholar 

  6. Eisenstein, D. J. & Hu, W. Baryonic features in the matter transfer function. Astrophys. J. 496, 605–614 (1998).

    ADS  Google Scholar 

  7. Eisenstein, D. J. & Hu, W. Power spectra for cold dark matter and its variants. Astrophys. J. 511, 5–15 (1999).

    ADS  Google Scholar 

  8. Baugh, C. M., Gaztanaga, E. & Efstathiou, G. A comparison of the evolution of density fields in perturbation theory and numerical simulations — II. Counts-in-cells analysis. Mon. Not. R. Astron. Soc. 274, 1049–1070 (1995).

    ADS  Google Scholar 

  9. White, S. D. M. in Cosmology and Large Scale Structure (eds Schaeffer, R. et al.) 349–430 (Elsevier Science, 1996).

  10. Zel’dovich, Y. B. Gravitational instability: an approximate theory for large density perturbations. Astron. Astrophys. 5, 84–89 (1970).

    ADS  Google Scholar 

  11. Bertschinger, E. Multiscale Gaussian random fields and their application to cosmological simulations. Astrophys. J. Suppl. 137, 1–20 (2001).

    ADS  Google Scholar 

  12. Jenkins, A. Second-order Lagrangian perturbation theory initial conditions for resimulations. Mon. Not. R. Astron. Soc. 403, 1859–1872 (2010).

    ADS  Google Scholar 

  13. Hahn, O. & Abel, T. Multi-scale initial conditions for cosmological simulations. Mon. Not. R. Astron. Soc. 415, 2101–2121 (2011).

    ADS  Google Scholar 

  14. Garrison, L. H., Eisenstein, D. J., Ferrer, D., Metchnik, M. V. & Pinto, P. A. Improving initial conditions for cosmological N-body simulations. Mon. Not. R. Astron. Soc. 461, 4125–4145 (2016).

    ADS  Google Scholar 

  15. Hoffman, Y. & Ribak, E. Constrained realizations of Gaussian fields — a simple algorithm. Astrophys. J. Lett. 380, L5–L8 (1991).

    ADS  Google Scholar 

  16. Salmon, J. Generation of correlated and constrained Gaussian stochastic processes for N-body simulations. Astrophys. J. 460, 59 (1996).

    ADS  Google Scholar 

  17. Price, D. J. & Monaghan, J. J. An energy-conserving formalism for adaptive gravitational force softening in smoothed particle hydrodynamics and N-body codes. Mon. Not. R. Astron. Soc. 374, 1347–1358 (2007).

    ADS  Google Scholar 

  18. Barnes, J. & Hut, P. A hierarchical O(N log N) force-calculation algorithm. Nature 324, 446–449 (1986).

    ADS  Google Scholar 

  19. Dehnen, W. A very fast and momentum-conserving tree code. Astrophys. J. Lett. 536, L39–L42 (2000).

    ADS  Google Scholar 

  20. Greengard, L. & Rokhlin, V. A fast algorithm for particle simulations. J. Comput. Phys. 73, 325–348 (1987).

    ADS  MathSciNet  MATH  Google Scholar 

  21. Hernquist, L., Bouchet, F. R. & Suto, Y. Application of the Ewald method to cosmological N-body simulations. Astrophys. J. Suppl. 75, 231–240 (1991).

    ADS  Google Scholar 

  22. Ewald, P. P. Die Berechnung optischer und elektrostatischer Gitterpotentiale. Ann. der Phys. 369, 253–287 (1921).

    ADS  MATH  Google Scholar 

  23. Hockney, R. W. & Eastwood, J. W. Computer Simulation Using Particles (McGraw-Hill, 1981).

  24. Brandt, A. Multi-level adaptive solutions to boundary-value problems. Math. Comput. 31, 333–390 (1977).

    MathSciNet  MATH  Google Scholar 

  25. Efstathiou, G., Davis, M., White, S. D. M. & Frenk, C. S. Numerical techniques for large cosmological N-body simulations. Astrophys. J. Suppl. 57, 241–260 (1985).

    ADS  Google Scholar 

  26. Bode, P. & Ostriker, J. P. Tree particle-mesh: an adaptive, efficient, and parallel code for collisionless cosmological simulation. Astrophys. J. Suppl. 145, 1–13 (2003).

    ADS  Google Scholar 

  27. Kravtsov, A. V., Klypin, A. A. & Khokhlov, A. M. Adaptive refinement tree: a new high-resolution N-body code for cosmological simulations. Astrophys. J. Suppl. 111, 73–94 (1997).

    ADS  Google Scholar 

  28. Wang, J. & White, S. D. M. Discreteness effects in simulations of hot/warm dark matter. Mon. Not. R. Astron. Soc. 380, 93–103 (2007).

    ADS  Google Scholar 

  29. Widrow, L. M. & Kaiser, N. Using the Schroedinger equation to simulate collisionless matter. Astrophys. J. Lett. 416, L71 (1993).

    ADS  Google Scholar 

  30. Schaller, M., Becker, C., Ruchayskiy, O., Boyarsky, A. & Shaposhnikov, M. A new framework for numerical simulations of structure formation. Mon. Not. R. Astron. Soc. 442, 3073–3095 (2014).

    ADS  Google Scholar 

  31. Uhlemann, C., Kopp, M. & Haugg, T. Schrödinger method as N-body double and UV completion of dust. Phys. Rev. D 90, 023517 (2014).

    ADS  Google Scholar 

  32. Colombi, S. & Touma, J. Vlasov-Poisson in 1D: waterbags. Mon. Not. R. Astron. Soc. 441, 2414–2432 (2014).

    ADS  Google Scholar 

  33. Colombi, S. Vlasov-Poisson in 1D for initially cold systems: post-collapse Lagrangian perturbation theory. Mon. Not. R. Astron. Soc. 446, 2902–2920 (2015).

    ADS  Google Scholar 

  34. Vogelsberger, M., White, S. D. M., Helmi, A. & Springel, V. The fine-grained phase-space structure of cold dark matter haloes. Mon. Not. R. Astron. Soc. 385, 236–254 (2008).

    ADS  Google Scholar 

  35. Vogelsberger, M. & White, S. D. M. Streams and caustics: the fine-grained structure of Λ cold dark matter haloes. Mon. Not. R. Astron. Soc. 413, 1419–1438 (2011).

    ADS  Google Scholar 

  36. Hahn, O., Abel, T. & Kaehler, R. A new approach to simulating collisionless dark matter fluids. Mon. Not. R. Astron. Soc. 434, 1171–1191 (2013).

    ADS  Google Scholar 

  37. Yoshikawa, K., Yoshida, N. & Umemura, M. Direct integration of the collisionless Boltzmann equation in six-dimensional phase space: self-gravitating systems. Astrophys. J. 762, 116 (2013).

    ADS  Google Scholar 

  38. Press, W. H. & Schechter, P. Formation of galaxies and clusters of galaxies by self-similar gravitational condensation. Astrophys. J. 187, 425–438 (1974).

    ADS  Google Scholar 

  39. White, S. D. M. The dynamics of rich clusters of galaxies. Mon. Not. R. Astron. Soc. 177, 717–733 (1976).

    ADS  Google Scholar 

  40. Aarseth, S. J., Gott, J. R. III & Turner, E. L. N-body simulations of galaxy clustering. I — Initial conditions and galaxy collapse times. Astrophys. J. 228, 664–683 (1979).

    ADS  Google Scholar 

  41. Efstathiou, G. The clustering of galaxies and its dependence upon Omega. Mon. Not. R. Astron. Soc. 187, 117–127 (1979).

    ADS  Google Scholar 

  42. Skillman, S. W. et al. Dark sky simulations: early data release. Preprint at arXiv https://arxiv.org/abs/1407.2600 (2014).

  43. Gnedin, O. Y., Kravtsov, A. V., Klypin, A. A. & Nagai, D. Response of dark matter halos to condensation of baryons: cosmological simulations and improved adiabatic contraction model. Astrophys. J. 616, 16–26 (2004).

    ADS  Google Scholar 

  44. Di Cintio, A. et al. The dependence of dark matter profiles on the stellar-to-halo mass ratio: a prediction for cusps versus cores. Mon. Not. R. Astron. Soc. 437, 415–423 (2014).

    ADS  Google Scholar 

  45. Zhu, Q. et al. Baryonic impact on the dark matter distribution in Milky Way-sized galaxies and their satellites. Mon. Not. R. Astron. Soc. 458, 1559–1580 (2016).

    ADS  Google Scholar 

  46. Benitez-Llambay, A., Frenk, C. S., Ludlow, A. D. & Navarro, J. F. Baryon-induced dark matter cores in the EAGLE simulations. Mon. Not. R. Astron. Soc. 488, 2387–2404 (2019).

    ADS  Google Scholar 

  47. Bose, S. et al. No cores in dark matter-dominated dwarf galaxies with bursty star formation histories. Mon. Not. R. Astron. Soc. 486, 4790–4804 (2019).

    ADS  Google Scholar 

  48. Katz, H. et al. Stellar feedback and the energy budget of late-type galaxies: missing baryons and core creation. Mon. Not. R. Astron. Soc. 480, 4287–4301 (2018).

    ADS  Google Scholar 

  49. Read, J. I., Walker, M. G. & Steger, P. Dark matter heats up in dwarf galaxies. Mon. Not. R. Astron. Soc. 484, 1401–1420 (2019).

    ADS  Google Scholar 

  50. Diemer, B. & Kravtsov, A. V. Dependence of the outer density profiles of halos on their mass accretion rate. Astrophys. J. 789, 1 (2014).

    ADS  Google Scholar 

  51. More, S., Diemer, B. & Kravtsov, A. V. The splashback radius as a physical halo boundary and the growth of halo mass. Astrophys. J. 810, 36 (2015).

    ADS  Google Scholar 

  52. Diemer, B., More, S. & Kravtsov, A. V. The pseudo-evolution of halo mass. Astrophys. J. 766, 25 (2013).

    ADS  Google Scholar 

  53. Davis, M., Efstathiou, G., Frenk, C. S. & White, S. D. M. The evolution of large-scale structure in a universe dominated by cold dark matter. Astrophys. J. 292, 371–394 (1985).

    ADS  Google Scholar 

  54. Springel, V., White, S. D. M., Tormen, G. & Kauffmann, G. Populating a cluster of galaxies — I. Results at z=0. Mon. Not. R. Astron. Soc. 328, 726–750 (2001).

    ADS  Google Scholar 

  55. Behroozi, P. S., Wechsler, R. H. & Wu, H.-Y. The ROCKSTAR phase-space temporal halo finder and the velocity offsets of cluster cores. Astrophys. J. 762, 109 (2013).

    ADS  Google Scholar 

  56. Bond, J. R., Cole, S., Efstathiou, G. & Kaiser, N. Excursion set mass functions for hierarchical Gaussian fluctuations. Astrophys. J. 379, 440–460 (1991).

    ADS  Google Scholar 

  57. Jenkins, A. et al. The mass function of dark matter haloes. Mon. Not. R. Astron. Soc. 321, 372–384 (2001).

    ADS  Google Scholar 

  58. Sheth, R. K. & Tormen, G. An excursion set model of hierarchical clustering: ellipsoidal collapse and the moving barrier. Mon. Not. R. Astron. Soc. 329, 61–75 (2002).

    ADS  Google Scholar 

  59. White, M. The mass function. Astrophys. J. Suppl. 143, 241–255 (2002).

    ADS  Google Scholar 

  60. Reed, D. et al. Evolution of the mass function of dark matter haloes. Mon. Not. R. Astron. Soc. 346, 565–572 (2003).

    ADS  Google Scholar 

  61. Warren, M. S., Abazajian, K., Holz, D. E. & Teodoro, L. Precision determination of the mass function of dark matter halos. Astrophys. J. 646, 881–885 (2006).

    ADS  Google Scholar 

  62. Reed, D. S., Governato, F., Quinn, T., Stadel, J. & Lake, G. The age dependence of galaxy clustering. Mon. Not. R. Astron. Soc. 378, 777–784 (2007).

    ADS  Google Scholar 

  63. Tinker, J. et al. Toward a halo mass function for precision cosmology: the limits of universality. Astrophys. J. 688, 709–728 (2008).

    ADS  Google Scholar 

  64. Angulo, R. E., Hahn, O. & Abel, T. The warm dark matter halo mass function below the cut-off scale. Mon. Not. R. Astron. Soc. 434, 3337–3347 (2013).

    ADS  Google Scholar 

  65. Schneider, A. Structure formation with suppressed small-scale perturbations. Mon. Not. R. Astron. Soc. 451, 3117–3130 (2015).

    ADS  Google Scholar 

  66. Eke, V. R., Cole, S. & Frenk, C. S. Cluster evolution as a diagnostic for Omega. Mon. Not. R. Astron. Soc. 282, 263–280 (1996).

    ADS  Google Scholar 

  67. Sheth, R. K., Mo, H. J. & Tormen, G. Ellipsoidal collapse and an improved model for the number and spatial distribution of dark matter haloes. Mon. Not. R. Astron. Soc. 323, 1–12 (2001).

    ADS  Google Scholar 

  68. Angulo, R. E. et al. Scaling relations for galaxy clusters in the Millennium-XXL simulation. Mon. Not. R. Astron. Soc. 426, 2046–2062 (2012).

    ADS  Google Scholar 

  69. Watson, W. A. et al. The halo mass function through the cosmic ages. Mon. Not. R. Astron. Soc. 433, 1230–1245 (2013).

    ADS  Google Scholar 

  70. Heitmann, K. et al. The Q continuum simulation: harnessing the power of GPU accelerated supercomputers. Astrophys. J. Suppl. 219, 34 (2015).

    ADS  Google Scholar 

  71. Bocquet, S., Saro, A., Dolag, K. & Mohr, J. J. Halo mass function: baryon impact, fitting formulae, and implications for cluster cosmology. Mon. Not. R. Astron. Soc. 456, 2361–2373 (2016).

    ADS  Google Scholar 

  72. Springel, V., Frenk, C. S. & White, S. D. M. The large-scale structure of the Universe. Nature 440, 1137–1144 (2006).

    ADS  Google Scholar 

  73. Springel, V. et al. First results from the IllustrisTNG simulations: matter and galaxy clustering. Mon. Not. R. Astron. Soc. 475, 676–698 (2018).

    ADS  Google Scholar 

  74. Cooray, A. & Sheth, R. Halo models of large scale structure. Phys. Rep. 372, 1–129 (2002).

    ADS  MATH  Google Scholar 

  75. Benson, A. J., Cole, S., Frenk, C. S., Baugh, C. M. & Lacey, C. G. The nature of galaxy bias and clustering. Mon. Not. R. Astron. Soc. 311, 793–808 (2000).

    ADS  Google Scholar 

  76. Navarro, J. F., Frenk, C. S. & White, S. D. M. The structure of cold dark matter halos. Astrophys. J. 462, 563 (1996).

    ADS  Google Scholar 

  77. Navarro, J. F., Frenk, C. S. & White, S. D. M. A universal density profile from hierarchical clustering. Astrophys. J. 490, 493–508 (1997).

    ADS  Google Scholar 

  78. Moore, B. et al. Dark matter substructure within galactic halos. Astrophys. J. Lett. 524, L19–L22 (1999).

    ADS  Google Scholar 

  79. Navarro, J. F. et al. The inner structure of ΛCDM haloes — III. Universality and asymptotic slopes. Mon. Not. R. Astron. Soc. 349, 1039–1051 (2004).

    ADS  Google Scholar 

  80. Einasto, J. On the construction of a composite model for the galaxy and on the determination of the system of galactic parameters. Trudy Astrofizicheskogo Inst. Alma-Ata 5, 87–100 (1965).

    ADS  Google Scholar 

  81. Ludlow, A. D. et al. The mass–concentration–redshift relation of cold dark matter haloes. Mon. Not. R. Astron. Soc. 441, 378–388 (2014).

    ADS  Google Scholar 

  82. Ludlow, A. D. et al. The mass–concentration–redshift relation of cold and warm dark matter haloes. Mon. Not. R. Astron. Soc. 460, 1214–1232 (2016).

    ADS  Google Scholar 

  83. Klypin, A., Yepes, G., Gottlöber, S., Prada, F. & Heß, S. MultiDark simulations: the story of dark matter halo concentrations and density profiles. Mon. Not. R. Astron. Soc. 457, 4340–4359 (2016).

    ADS  Google Scholar 

  84. Jing, Y. P. Intrinsic correlation of halo ellipticity and its implications for large-scale weak lensing surveys. Mon. Not. R. Astron. Soc. 335, L89–L93 (2002).

    ADS  Google Scholar 

  85. Allgood, B. et al. The shape of dark matter haloes: dependence on mass, redshift, radius and formation. Mon. Not. R. Astron. Soc. 367, 1781–1796 (2006).

    ADS  Google Scholar 

  86. Bett, P. et al. The spin and shape of dark matter haloes in the Millennium simulation of a Λ cold dark matter universe. Mon. Not. R. Astron. Soc. 376, 215–232 (2007).

    ADS  Google Scholar 

  87. Diemand, J., Kuhlen, M. & Madau, P. Formation and evolution of galaxy dark matter halos and their substructure. Astrophys. J. 667, 859–877 (2007).

    ADS  Google Scholar 

  88. Navarro, J. F. et al. The diversity and similarity of simulated cold dark matter haloes. Mon. Not. R. Astron. Soc. 402, 21–34 (2010).

    ADS  Google Scholar 

  89. Bertschinger, E. Self-similar secondary infall and accretion in an Einstein–de Sitter universe. Astrophys. J. Suppl. 58, 39–65 (1985).

    ADS  Google Scholar 

  90. Ghigna, S. et al. Dark matter haloes within clusters. Mon. Not. R. Astron. Soc. 300, 146–162 (1998).

    ADS  Google Scholar 

  91. Springel, V. et al. The Aquarius Project: the subhaloes of galactic haloes. Mon. Not. R. Astron. Soc. 391, 1685–1711 (2008).

    ADS  Google Scholar 

  92. Gao, L. et al. The Phoenix Project: the dark side of rich galaxy clusters. Mon. Not. R. Astron. Soc. 425, 2169–2186 (2012).

    ADS  Google Scholar 

  93. Springel, V. et al. Prospects for detecting supersymmetric dark matter in the Galactic halo. Nature 456, 73–76 (2008).

    ADS  Google Scholar 

  94. Gao, L., White, S. D. M., Jenkins, A., Stoehr, F. & Springel, V. The subhalo populations of ΛCDM dark haloes. Mon. Not. R. Astron. Soc. 355, 819–834 (2004).

    ADS  Google Scholar 

  95. Colella, P. & Woodward, P. R. The piecewise parabolic method (PPM) for gas-dynamical simulations. J. Comput. Phys. 54, 174–201 (1984).

    ADS  MATH  Google Scholar 

  96. Woodward, P. R. in NATO Advanced Science Institutes (ASI) Series C Vol. 188 (eds Winkler, K.-H. A. & Norman, M. L.) 245 (Kluwer Academic,1986).

  97. Berger, M. J. & Oliger, J. Adaptive mesh refinement for hyperbolic partial differential equations. J. Comput. Phys. 53, 484–512 (1984).

    ADS  MathSciNet  MATH  Google Scholar 

  98. Berger, M. J. & Colella, P. Local adaptive mesh refinement for shock hydrodynamics. J. Comput. Phys. 82, 64–84 (1989).

    ADS  MATH  Google Scholar 

  99. Klein, R. I., McKee, C. F. & Colella, P. On the hydrodynamic interaction of shock waves with interstellar clouds. 1: Nonradiative shocks in small clouds. Astrophys. J. 420, 213–236 (1994).

    ADS  Google Scholar 

  100. Bryan, G. L. & Norman, M. L. Simulating X-ray clusters with adaptive mesh refinement. Preprint at arXiv https://arxiv.org/abs/astro-ph/9710186 (1995).

  101. Cockburn, B., Lin, S.-Y. & Shu, C.-W. TVB Runge–Kutta local projection discontinuous Galerkin finite element method for conservation laws III: one-dimensional systems. J. Comput. Phys. 84, 90–113 (1989).

    ADS  MathSciNet  MATH  Google Scholar 

  102. Mocz, P., Vogelsberger, M., Sijacki, D., Pakmor, R. & Hernquist, L. A discontinuous Galerkin method for solving the fluid and magnetohydrodynamic equations in astrophysical simulations. Mon. Not. R. Astron. Soc. 437, 397–414 (2014).

    ADS  Google Scholar 

  103. Guillet, T., Pakmor, R., Springel, V., Chandrashekar, P. & Klingenberg, C. High-order magnetohydrodynamics for astrophysics with an adaptive mesh refinement discontinuous galerkin scheme. Mon. Not. R. Astron. Soc. 485, 4209–4246 (2019).

    ADS  Google Scholar 

  104. Lucy, L. B. A numerical approach to the testing of the fission hypothesis. Astron. J. 82, 1013–1024 (1977).

    ADS  Google Scholar 

  105. Gingold, R. A. & Monaghan, J. J. Smoothed particle hydrodynamics — theory and application to non-spherical stars. Mon. Not. R. Astron. Soc. 181, 375–389 (1977).

    ADS  MATH  Google Scholar 

  106. Springel, V. Smoothed particle hydrodynamics in astrophysics. Annu. Rev. Astron. Astrophys. 48, 391–430 (2010).

    ADS  Google Scholar 

  107. Price, D. J. Smoothed particle hydrodynamics and magnetohydrodynamics. J. Comput. Phys. 231, 759–794 (2012).

    ADS  MathSciNet  MATH  Google Scholar 

  108. Read, J. I. & Hayfield, T. SPHS: smoothed particle hydrodynamics with a higher order dissipation switch. Mon. Not. R. Astron. Soc. 422, 3037–3055 (2012).

    ADS  Google Scholar 

  109. Hopkins, P. F. A general class of Lagrangian smoothed particle hydrodynamics methods and implications for fluid mixing problems. Mon. Not. R. Astron. Soc. 428, 2840–2856 (2013).

    ADS  Google Scholar 

  110. Keller, B. W., Wadsley, J., Benincasa, S. M. & Couchman, H. M. P. A superbubble feedback model for galaxy simulations. Mon. Not. R. Astron. Soc. 442, 3013–3025 (2014).

    ADS  Google Scholar 

  111. Schaye, J. et al. The EAGLE project: simulating the evolution and assembly of galaxies and their environments. Mon. Not. R. Astron. Soc. 446, 521–554 (2015).

    ADS  Google Scholar 

  112. Wang, L. et al. NIHAO project — I. Reproducing the inefficiency of galaxy formation across cosmic time with a large sample of cosmological hydrodynamical simulations. Mon. Not. R. Astron. Soc. 454, 83–94 (2015).

    ADS  Google Scholar 

  113. Barnes, D. J. et al. The Cluster-EAGLE project: global properties of simulated clusters with resolved galaxies. Mon. Not. R. Astron. Soc. 471, 1088–1106 (2017).

    ADS  Google Scholar 

  114. Gnedin, N. Y. Softened Lagrangian hydrodynamics for cosmology. Astrophys. J. Suppl. 97, 231–257 (1995).

    ADS  Google Scholar 

  115. Pen, U.-L. A high-resolution adaptive moving mesh hydrodynamic algorithm. Astrophys. J. Suppl. 115, 19–34 (1998).

    ADS  MathSciNet  MATH  Google Scholar 

  116. Springel, V. E pur si muove: Galilean-invariant cosmological hydrodynamical simulations on a moving mesh. Mon. Not. R. Astron. Soc. 401, 791–851 (2010).

    ADS  Google Scholar 

  117. Duffell, P. C. & MacFadyen, A. I. TESS: a relativistic hydrodynamics code on a moving Voronoi mesh. Astrophys. J. Suppl. 197, 15 (2011).

    ADS  Google Scholar 

  118. Vandenbroucke, B. & De Rijcke, S. The moving mesh code SHADOWFAX. Astron. Comput. 16, 109–130 (2016).

    ADS  Google Scholar 

  119. Hopkins, P. F. A new class of accurate, mesh-free hydrodynamic simulation methods. Mon. Not. R. Astron. Soc. 450, 53–110 (2015).

    ADS  Google Scholar 

  120. Sutherland, R. S. & Dopita, M. A. Cooling functions for low-density astrophysical plasmas. Astrophys. J. Suppl. 88, 253–327 (1993).

    ADS  Google Scholar 

  121. Wiersma, R. P. C., Schaye, J. & Smith, B. D. The effect of photoionization on the cooling rates of enriched, astrophysical plasmas. Mon. Not. R. Astron. Soc. 393, 99–107 (2009).

    ADS  Google Scholar 

  122. Haardt, F. & Madau, P. Radiative transfer in a clumpy universe. IV. new synthesis models of the cosmic UV/X-ray background. Astrophys. J. 746, 125 (2012).

    ADS  Google Scholar 

  123. Tielens, A. G. G. M. The Physics and Chemistry of the Interstellar Medium (Cambridge Univ. Press, 2010).

  124. Springel, V. & Hernquist, L. Cosmological smoothed particle hydrodynamics simulations: a hybrid multiphase model for star formation. Mon. Not. R. Astron. Soc. 339, 289–311 (2003).

    ADS  Google Scholar 

  125. Agertz, O., Teyssier, R. & Moore, B. The formation of disc galaxies in a ΛCDM universe. Mon. Not. R. Astron. Soc. 410, 1391–1408 (2011).

    ADS  Google Scholar 

  126. Dalla Vecchia, C. & Schaye, J. Simulating galactic outflows with thermal supernova feedback. Mon. Not. R. Astron. Soc. 426, 140–158 (2012).

    ADS  Google Scholar 

  127. Hopkins, P. F., Quataert, E. & Murray, N. The structure of the interstellar medium of star-forming galaxies. Mon. Not. R. Astron. Soc. 421, 3488–3521 (2012).

    ADS  Google Scholar 

  128. Agertz, O., Kravtsov, A. V., Leitner, S. N. & Gnedin, N. Y. Toward a complete accounting of energy and momentum from stellar feedback in galaxy formation simulations. Astrophys. J. 770, 25 (2013).

    ADS  Google Scholar 

  129. Rosdahl, J., Schaye, J., Teyssier, R. & Agertz, O. Galaxies that shine: radiation-hydrodynamical simulations of disc galaxies. Mon. Not. R. Astron. Soc. 451, 34–58 (2015).

    ADS  Google Scholar 

  130. Emerick, A., Bryan, G. L. & Mac Low, M.-M. Simulating an isolated dwarf galaxy with multichannel feedback and chemical yields from individual stars. Mon. Not. R. Astron. Soc. 482, 1304–1329 (2019).

    ADS  Google Scholar 

  131. Krumholz, M. R. & Gnedin, N. Y. A comparison of methods for determining the molecular content of model galaxies. Astrophys. J. 729, 36 (2011).

    ADS  Google Scholar 

  132. Bigiel, F. et al. A constant molecular gas depletion time in nearby disk galaxies. Astrophys. J. Lett. 730, L13 (2011).

    ADS  Google Scholar 

  133. Krumholz, M. R., Dekel, A. & McKee, C. F. A universal, local star formation law in galactic clouds, nearby galaxies, high-redshift disks, and starbursts. Astrophys. J. 745, 69 (2012).

    ADS  Google Scholar 

  134. Hopkins, P. F. et al. Galaxies on FIRE (Feedback in Realistic Environments): stellar feedback explains cosmologically inefficient star formation. Mon. Not. R. Astron. Soc. 445, 581–603 (2014).

    ADS  Google Scholar 

  135. Hopkins, P. F. et al. FIRE-2 simulations: physics versus numerics in galaxy formation. Mon. Not. R. Astron. Soc. 480, 800–863 (2018).

    ADS  Google Scholar 

  136. Stinson, G. et al. Star formation and feedback in smoothed particle hydrodynamic simulations — I. Isolated galaxies. Mon. Not. R. Astron. Soc. 373, 1074–1090 (2006).

    ADS  Google Scholar 

  137. Teyssier, R., Pontzen, A., Dubois, Y. & Read, J. I. Cusp–core transformations in dwarf galaxies: observational predictions. Mon. Not. R. Astron. Soc. 429, 3068–3078 (2013).

    ADS  Google Scholar 

  138. Vogelsberger, M. et al. Properties of galaxies reproduced by a hydrodynamic simulation. Nature 509, 177–182 (2014).

    ADS  Google Scholar 

  139. Pillepich, A. et al. Simulating galaxy formation with the IllustrisTNG model. Mon. Not. R. Astron. Soc. 473, 4077–4106 (2018).

    ADS  Google Scholar 

  140. Semenov, V. A., Kravtsov, A. V. & Gnedin, N. Y. The physical origin of long gas depletion times in galaxies. Astrophys. J. 845, 133 (2017).

    ADS  Google Scholar 

  141. Trebitsch, M., Blaizot, J., Rosdahl, J., Devriendt, J. & Slyz, A. Fluctuating feedback-regulated escape fraction of ionizing radiation in low-mass, high-redshift galaxies. Mon. Not. R. Astron. Soc. 470, 224–239 (2017).

    ADS  Google Scholar 

  142. Rosdahl, J. et al. The SPHINX cosmological simulations of the first billion years: the impact of binary stars on reionization. Mon. Not. R. Astron. Soc. 479, 994–1016 (2018).

    ADS  Google Scholar 

  143. Gnedin, N. Y. & Kravtsov, A. V. Environmental dependence of the Kennicutt–Schmidt relation in galaxies. Astrophys. J. 728, 88 (2011).

    ADS  Google Scholar 

  144. Christensen, C. et al. Implementing molecular hydrogen in hydrodynamic simulations of galaxy formation. Mon. Not. R. Astron. Soc. 425, 3058–3076 (2012).

    ADS  Google Scholar 

  145. Feldmann, R., Gnedin, N. Y. & Kravtsov, A. V. The X-factor in galaxies. II. The molecular-hydrogen–star-formation relation. Astrophys. J. 758, 127 (2012).

    ADS  Google Scholar 

  146. Kuhlen, M., Krumholz, M. R., Madau, P., Smith, B. D. & Wise, J. Dwarf galaxy formation with H2-regulated star formation. Astrophys. J. 749, 36 (2012).

    ADS  Google Scholar 

  147. Monaco, P., Murante, G., Borgani, S. & Dolag, K. Schmidt–Kennicutt relations in SPH simulations of disc galaxies with effective thermal feedback from supernovae. Mon. Not. R. Astron. Soc. 421, 2485–2497 (2012).

    ADS  Google Scholar 

  148. Li, H. et al. Star cluster formation in cosmological simulations. I. Properties of young clusters. Astrophys. J. 834, 69 (2017).

    ADS  Google Scholar 

  149. Wiersma, R. P. C., Schaye, J., Theuns, T., Dalla Vecchia, C. & Tornatore, L. Chemical enrichment in cosmological, smoothed particle hydrodynamics simulations. Mon. Not. R. Astron. Soc. 399, 574–600 (2009).

    ADS  Google Scholar 

  150. Vogelsberger, M. et al. A model for cosmological simulations of galaxy formation physics. Mon. Not. R. Astron. Soc. 436, 3031–3067 (2013).

    ADS  Google Scholar 

  151. Naiman, J. P. et al. First results from the IllustrisTNG simulations: a tale of two elements — chemical evolution of magnesium and europium. Mon. Not. R. Astron. Soc. 477, 1206–1224 (2018).

    ADS  Google Scholar 

  152. Oppenheimer, B. D. et al. Feedback and recycled wind accretion: assembling the z = 0 galaxy mass function. Mon. Not. R. Astron. Soc. 406, 2325–2338 (2010).

    ADS  Google Scholar 

  153. Stinson, G. S. et al. Making galaxies in a cosmological context: the need for early stellar feedback. Mon. Not. R. Astron. Soc. 428, 129–140 (2013).

    ADS  Google Scholar 

  154. Smith, M. C., Sijacki, D. & Shen, S. Cosmological simulations of dwarfs: the need for ISM physics beyond SN feedback alone. Mon. Not. R. Astron. Soc. 485, 3317–3333 (2019).

    ADS  Google Scholar 

  155. Behroozi, P. S., Conroy, C. & Wechsler, R. H. A comprehensive analysis of uncertainties affecting the stellar mass–halo mass relation for 0 < z < 4. Astrophys. J. 717, 379–403 (2010).

    ADS  Google Scholar 

  156. Moster, B. P., Naab, T. & White, S. D. M. Galactic star formation and accretion histories from matching galaxies to dark matter haloes. Mon. Not. R. Astron. Soc. 428, 3121–3138 (2013).

    ADS  Google Scholar 

  157. Muratov, A. L. et al. Gusty, gaseous flows of FIRE: galactic winds in cosmological simulations with explicit stellar feedback. Mon. Not. R. Astron. Soc. 454, 2691–2713 (2015).

    ADS  Google Scholar 

  158. Gehren, T., Fried, J., Wehinger, P. A. & Wyckoff, S. Host galaxies of quasars and their association with galaxy clusters. Astrophys. J. 278, 11–27 (1984).

    ADS  Google Scholar 

  159. Kormendy, J. & Richstone, D. Inward bound — the search for supermassive black holes in galactic nuclei. Annu. Rev. Astron. Astrophys. 33, 581 (1995).

    ADS  Google Scholar 

  160. Filippenko, A. V. & Ho, L. C. A low-mass central black hole in the bulgeless Seyfert 1 galaxy NGC 4395. Astrophys. J. Lett. 588, L13–L16 (2003).

    ADS  Google Scholar 

  161. Shields, J. C. et al. An accreting black hole in the nuclear star cluster of the bulgeless galaxy NGC 1042. Astrophys. J. 682, 104–109 (2008).

    ADS  Google Scholar 

  162. Reines, A. E., Sivakoff, G. R., Johnson, K. E. & Brogan, C. L. An actively accreting massive black hole in the dwarf starburst galaxy Henize2-10. Nature 470, 66–68 (2011).

    ADS  Google Scholar 

  163. Moran, E. C., Shahinyan, K., Sugarman, H. R., Vélez, D. O. & Eracleous, M. Black holes at the centers of nearby dwarf galaxies. Astron. J. 148, 136 (2014).

    ADS  Google Scholar 

  164. Booth, C. M. & Schaye, J. Cosmological simulations of the growth of supermassive black holes and feedback from active galactic nuclei: method and tests. Mon. Not. R. Astron. Soc. 398, 53–74 (2009).

    ADS  Google Scholar 

  165. Shlosman, I., Frank, J. & Begelman, M. C. Bars within bars — a mechanism for fuelling active galactic nuclei. Nature 338, 45–47 (1989).

    ADS  Google Scholar 

  166. Hopkins, P. F. & Quataert, E. An analytic model of angular momentum transport by gravitational torques: from galaxies to massive black holes. Mon. Not. R. Astron. Soc. 415, 1027–1050 (2011).

    ADS  Google Scholar 

  167. Bournaud, F. et al. Black hole growth and active galactic nuclei obscuration by instability-driven inflows in high-redshift disk galaxies fed by cold streams. Astrophys. J. Lett. 741, L33 (2011).

    ADS  Google Scholar 

  168. Gabor, J. M. & Bournaud, F. Simulations of supermassive black hole growth in high-redshift disc galaxies. Mon. Not. R. Astron. Soc. 434, 606–620 (2013).

    ADS  Google Scholar 

  169. Anglés-Alcázar, D., Özel, F. & Davé, R. Black hole–galaxy correlations without self-regulation. Astrophys. J. 770, 5 (2013).

    ADS  Google Scholar 

  170. Anglés-Alcázar, D. et al. Black holes on FIRE: stellar feedback limits early feeding of galactic nuclei. Mon. Not. R. Astron. Soc. 472, L109–L114 (2017).

    ADS  Google Scholar 

  171. Davé, R. et al. SIMBA: cosmological simulations with black hole growth and feedback. Mon. Not. R. Astron. Soc. 486, 2827–2849 (2019).

    ADS  Google Scholar 

  172. Krolik, J. H. Active Galactic Nuclei: From the Central Black Hole to the Galactic Environment (Princeton Univ. Press, 1999).

  173. Springel, V., Di Matteo, T. & Hernquist, L. Modelling feedback from stars and black holes in galaxy mergers. Mon. Not. R. Astron. Soc. 361, 776–794 (2005).

    ADS  Google Scholar 

  174. Di Matteo, T., Springel, V. & Hernquist, L. Energy input from quasars regulates the growth and activity of black holes and their host galaxies. Nature 433, 604–607 (2005).

    ADS  Google Scholar 

  175. Debuhr, J., Quataert, E., Ma, C.-P. & Hopkins, P. Self-regulated black hole growth via momentum deposition in galaxy merger simulations. Mon. Not. R. Astron. Soc. 406, L55–L59 (2010).

    ADS  Google Scholar 

  176. Costa, T., Rosdahl, J., Sijacki, D. & Haehnelt, M. G. Driving gas shells with radiation pressure on dust in radiation-hydrodynamic simulations. Mon. Not. R. Astron. Soc. 473, 4197–4219 (2018).

    ADS  Google Scholar 

  177. Barnes, D. J., Kannan, R., Vogelsberger, M. & Marinacci, F. Radiative AGN feedback on a moving mesh: the impact of the galactic disc and dust physics on outflow properties. Preprint at (2018).

  178. Choi, E., Ostriker, J. P., Naab, T. & Johansson, P. H. Radiative and momentum-based mechanical active galactic nucleus feedback in a three-dimensional galaxy evolution code. Astrophys. J. 754, 125 (2012).

    ADS  Google Scholar 

  179. Sijacki, D., Springel, V., Di Matteo, T. & Hernquist, L. A unified model for AGN feedback in cosmological simulations of structure formation. Mon. Not. R. Astron. Soc. 380, 877–900 (2007).

    ADS  Google Scholar 

  180. Weinberger, R. et al. Simulating galaxy formation with black hole driven thermal and kinetic feedback. Mon. Not. R. Astron. Soc. 465, 3291–3308 (2017).

    ADS  Google Scholar 

  181. Marinacci, F. & Vogelsberger, M. Effects of simulated cosmological magnetic fields on the galaxy population. Mon. Not. R. Astron. Soc. 456, L69–L73 (2016).

    ADS  Google Scholar 

  182. Ferrière, K. M. The interstellar environment of our galaxy. Rev. Mod. Phys. 73, 1031–1066 (2001).

    ADS  Google Scholar 

  183. Kotera, K. & Olinto, A. V. The astrophysics of ultrahigh-energy cosmic rays. Annu. Rev. Astron. Astrophys. 49, 119–153 (2011).

    ADS  Google Scholar 

  184. Donnert, J., Dolag, K., Lesch, H. & Müller, E. Cluster magnetic fields from galactic outflows. Mon. Not. R. Astron. Soc. 392, 1008–1021 (2009).

    ADS  Google Scholar 

  185. Marinacci, F. et al. First results from the IllustrisTNG simulations: radio haloes and magnetic fields. Mon. Not. R. Astron. Soc. 480, 5113–5139 (2018).

    ADS  Google Scholar 

  186. Pakmor, R. et al. Magnetic field formation in the Milky Way like disc galaxies of the Auriga project. Mon. Not. R. Astron. Soc. 469, 3185–3199 (2017).

    ADS  Google Scholar 

  187. Powell, K. G., Roe, P. L., Linde, T. J., Gombosi, T. I. & De Zeeuw, D. L. A solution-adaptive upwind scheme for ideal magnetohydrodynamics. J. Comput. Phys. 154, 284–309 (1999).

    ADS  MathSciNet  MATH  Google Scholar 

  188. Dedner, A. et al. Hyperbolic divergence cleaning for the MHD equations. J. Comput. Phys. 175, 645–673 (2002).

    ADS  MathSciNet  MATH  Google Scholar 

  189. Evans, C. R. & Hawley, J. F. Simulation of magnetohydrodynamic flows — a constrained transport method. Astrophys. J. 332, 659–677 (1988).

    ADS  Google Scholar 

  190. Mocz, P. et al. A moving mesh unstaggered constrained transport scheme for magnetohydrodynamics. Mon. Not. R. Astron. Soc. 463, 477–488 (2016).

    ADS  Google Scholar 

  191. Rosswog, S. & Price, D. MAGMA: a three-dimensional, Lagrangian magnetohydrodynamics code for merger applications. Mon. Not. R. Astron. Soc. 379, 915–931 (2007).

    ADS  Google Scholar 

  192. Dolag, K. & Stasyszyn, F. An MHD GADGET for cosmological simulations. Mon. Not. R. Astron. Soc. 398, 1678–1697 (2009).

    ADS  Google Scholar 

  193. Stone, J. M. & Norman, M. L. ZEUS-2D: a radiation magnetohydrodynamics code for astrophysical flows in two space dimensions. II. The magnetohydrodynamic algorithms and tests. Astrophys. J. Suppl. 80, 791 (1992).

    ADS  Google Scholar 

  194. Londrillo, P. & del Zanna, L. On the divergence-free condition in Godunov-type schemes for ideal magnetohydrodynamics: the upwind constrained transport method. J. Comput. Phys. 195, 17–48 (2004).

    ADS  MathSciNet  MATH  Google Scholar 

  195. Fromang, S., Hennebelle, P. & Teyssier, R. A high order Godunov scheme with constrained transport and adaptive mesh refinement for astrophysical magnetohydrodynamics. Astron. Astrophys. 457, 371–384 (2006).

    ADS  Google Scholar 

  196. Teyssier, R., Fromang, S. & Dormy, E. Kinematic dynamos using constrained transport with high order Godunov schemes and adaptive mesh refinement. J. Comput. Phys. 218, 44–67 (2006).

    ADS  MathSciNet  MATH  Google Scholar 

  197. Balsara, D. S. A two-dimensional HLLC Riemann solver for conservation laws: application to Euler and magnetohydrodynamic flows. J. Comput. Phys. 231, 7476–7503 (2012).

    ADS  MathSciNet  MATH  Google Scholar 

  198. Ferriere, K. Magnetic fields in galaxies: their origin and their impact on the interstellar medium. Acta Astron. Sin. 44, 115–122 (2003).

    ADS  Google Scholar 

  199. Cox, D. P. The three-phase interstellar medium revisited. Annu. Rev. Astron. Astrophys. 43, 337–385 (2005).

    ADS  Google Scholar 

  200. Field, G. B., Goldsmith, D. W. & Habing, H. J. Cosmic-ray heating of the interstellar gas. Astrophys. J. Lett. 155, L149 (1969).

    ADS  Google Scholar 

  201. Wolfire, M. G., Hollenbach, D., McKee, C. F., Tielens, A. G. G. M. & Bakes, E. L. O. The neutral atomic phases of the interstellar medium. Astrophys. J. 443, 152–168 (1995).

    ADS  Google Scholar 

  202. Uhlig, M. et al. Galactic winds driven by cosmic ray streaming. Mon. Not. R. Astron. Soc. 423, 2374–2396 (2012).

    ADS  Google Scholar 

  203. Booth, C. M., Agertz, O., Kravtsov, A. V. & Gnedin, N. Y. Simulations of disk galaxies with cosmic ray driven galactic winds. Astrophys. J. Lett. 777, L16 (2013).

    ADS  Google Scholar 

  204. Hanasz, M. et al. Cosmic rays can drive strong outflows from gas-rich high-redshift disk galaxies. Astrophys. J. Lett. 777, L38 (2013).

    ADS  Google Scholar 

  205. Salem, M., Bryan, G. L. & Hummels, C. Cosmological simulations of galaxy formation with cosmic rays. Astrophys. J. Lett. 797, L18 (2014).

    ADS  Google Scholar 

  206. Pakmor, R., Pfrommer, C., Simpson, C. M. & Springel, V. Galactic winds driven by isotropic and anisotropic cosmic-ray diffusion in disk galaxies. Astrophys. J. Lett. 824, L30 (2016).

    ADS  Google Scholar 

  207. Simpson, C. M. et al. The role of cosmic-ray pressure in accelerating galactic outflows. Astrophys. J. Lett. 827, L29 (2016).

    ADS  Google Scholar 

  208. Ruszkowski, M., Yang, H.-Y. K. & Zweibel, E. Global simulations of galactic winds including cosmic-ray streaming. Astrophys. J. 834, 208 (2017).

    ADS  Google Scholar 

  209. Farber, R., Ruszkowski, M., Yang, H.-Y. K. & Zweibel, E. G. Impact of cosmic-ray transport on galactic winds. Astrophys. J. 856, 112 (2018).

    ADS  Google Scholar 

  210. Girichidis, P., Naab, T., Hanasz, M. & Walch, S. Cooler and smoother — the impact of cosmic rays on the phase structure of galactic outflows. Mon. Not. R. Astron. Soc. 479, 3042–3067 (2018).

    ADS  Google Scholar 

  211. Jacob, S., Pakmor, R., Simpson, C. M., Springel, V. & Pfrommer, C. The dependence of cosmic ray-driven galactic winds on halo mass. Mon. Not. R. Astron. Soc. 475, 570–584 (2018).

    ADS  Google Scholar 

  212. Pfrommer, C., Pakmor, R., Schaal, K., Simpson, C. M. & Springel, V. Simulating cosmic ray physics on a moving mesh. Mon. Not. R. Astron. Soc. 465, 4500–4529 (2017).

    ADS  Google Scholar 

  213. Sharma, P. & Hammett, G. W. Preserving monotonicity in anisotropic diffusion. J. Comput. Phys. 227, 123–142 (2007).

    ADS  MathSciNet  MATH  Google Scholar 

  214. Kannan, R., Springel, V., Pakmor, R., Marinacci, F. & Vogelsberger, M. Accurately simulating anisotropic thermal conduction on a moving mesh. Mon. Not. R. Astron. Soc. 458, 410–424 (2016).

    ADS  Google Scholar 

  215. Butsky, I. S. & Quinn, T. R. The role of cosmic-ray transport in shaping the simulated circumgalactic medium. Astrophys. J. 868, 108 (2018).

    ADS  Google Scholar 

  216. Sharma, P., Colella, P. & Martin, D. Numerical implementation of streaming down the gradient: application to fluid modeling of cosmic rays and saturated conduction. Siam J. Sci. Comput. 32, 3476–3494 (2009).

    MathSciNet  Google Scholar 

  217. Jiang, Y.-F. & Oh, S. P. A new numerical scheme for cosmic-ray transport. Astrophys. J. 854, 5 (2018).

    ADS  Google Scholar 

  218. Thomas, T. & Pfrommer, C. Cosmic-ray hydrodynamics: Alfvén-wave regulated transport of cosmic rays. Mon. Not. R. Astron. Soc. 485, 2977–3008 (2019).

    ADS  Google Scholar 

  219. Gnedin, N. Y. & Kaurov, A. A. Cosmic reionization on computers. II. Reionization history and its back-reaction on early galaxies. Astrophys. J. 793, 30 (2014).

    ADS  Google Scholar 

  220. Ocvirk, P. et al. Cosmic Dawn II (CoDa II): a new radiation-hydrodynamics simulation of the self-consistent coupling of galaxy formation and reionization. Preprint at (2018).

  221. Wise, J. H., Abel, T., Turk, M. J., Norman, M. L. & Smith, B. D. The birth of a galaxy — II. The role of radiation pressure. Mon. Not. R. Astron. Soc. 427, 311–326 (2012).

    ADS  Google Scholar 

  222. Gnedin, N. Y. & Abel, T. Multi-dimensional cosmological radiative transfer with a Variable Eddington Tensor formalism. New Astron. 6, 437–455 (2001).

    ADS  Google Scholar 

  223. Gnedin, N. Y. On the proper use of the reduced speed of light approximation. Astrophys. J. 833, 66 (2016).

    ADS  Google Scholar 

  224. Deparis, N., Aubert, D., Ocvirk, P., Chardin, J. & Lewis, J. Impact of the reduced speed of light approximation on ionization front velocities in cosmological simulations of the epoch of reionization. Astron. Astrophys. 622, A142 (2019).

    ADS  Google Scholar 

  225. Ocvirk, P., Aubert, D., Chardin, J., Deparis, N. & Lewis, J. Impact of the reduced speed of light approximation on the post-overlap neutral hydrogen fraction in numerical simulations of the epoch of reionization. Astron. Astrophys. 626, A77 (2019).

    ADS  Google Scholar 

  226. Mihalas, D. & Mihalas, B. W. Foundations of Radiation Hydrodynamics (Oxford Univ. Press, 1984).

  227. Abel, T., Norman, M. L. & Madau, P. Photon-conserving radiative transfer around point sources in multidimensional numerical cosmology. Astrophys. J. 523, 66–71 (1999).

    ADS  Google Scholar 

  228. Jaura, O., Glover, S. C. O., Klessen, R. S. & Paardekooper, J.-P. SPRAI: coupling of radiative feedback and primordial chemistry in moving mesh hydrodynamics. Mon. Not. R. Astron. Soc. 475, 2822–2834 (2018).

    ADS  Google Scholar 

  229. Rijkhorst, E.-J., Plewa, T., Dubey, A. & Mellema, G. Hybrid characteristics: 3D radiative transfer for parallel adaptive mesh refinement hydrodynamics. Astron. Astrophys. 452, 907–920 (2006).

    ADS  Google Scholar 

  230. Rosen, A. L., Krumholz, M. R., Oishi, J. S., Lee, A. T. & Klein, R. I. Hybrid Adaptive Ray-Moment Method (HARM2): a highly parallel method for radiation hydrodynamics on adaptive grids. J. Comput. Phys. 330, 924–942 (2017).

    ADS  MathSciNet  MATH  Google Scholar 

  231. Whalen, D. & Norman, M. L. A multistep algorithm for the radiation hydrodynamical transport of cosmological ionization fronts and ionized flows. Astrophys. J. Suppl. 162, 281–303 (2006).

    ADS  Google Scholar 

  232. Trac, H. & Cen, R. Radiative transfer simulations of cosmic reionization. I. Methodology and initial results. Astrophys. J. 671, 1–13 (2007).

    ADS  Google Scholar 

  233. Pawlik, A. H. & Schaye, J. TRAPHIC — radiative transfer for smoothed particle hydrodynamics simulations. Mon. Not. R. Astron. Soc. 389, 651–677 (2008).

    ADS  Google Scholar 

  234. Petkova, M. & Springel, V. A novel approach for accurate radiative transfer in cosmological hydrodynamic simulations. Mon. Not. R. Astron. Soc. 415, 3731–3749 (2011).

    ADS  Google Scholar 

  235. Ciardi, B., Ferrara, A., Marri, S. & Raimondo, G. Cosmological reionization around the first stars: Monte Carlo radiative transfer. Mon. Not. R. Astron. Soc. 324, 381–388 (2001).

    ADS  Google Scholar 

  236. Oxley, S. & Woolfson, M. M. Smoothed particle hydrodynamics with radiation transfer. Mon. Not. R. Astron. Soc. 343, 900–912 (2003).

    ADS  Google Scholar 

  237. Tasitsiomi, A. Ly Radiative transfer in cosmological simulations and application to a z = 8 Ly emitter. Astrophys. J. 645, 792–813 (2006).

    ADS  Google Scholar 

  238. Semelin, B., Combes, F. & Baek, S. Lyman-alpha radiative transfer during the epoch of reionization: contribution to 21-cm signal fluctuations. Astron. Astrophys. 474, 365–374 (2007).

    ADS  Google Scholar 

  239. Dullemond, C. P. et al. RADMC-3D: A Multi-purpose Radiative Transfer Tool (Astrophysics Source Code Library, 2012).

  240. Smith, A. et al. The physics of Lyman escape from high-redshift galaxies. Mon. Not. R. Astron. Soc. 484, 39–59 (2019).

    ADS  Google Scholar 

  241. Lucy, L. B. Improved Monte Carlo techniques for the spectral synthesis of supernovae. Astron. Astrophys. 345, 211–220 (1999).

    ADS  Google Scholar 

  242. Gentile, N. A. Implicit Monte Carlo diffusion — an acceleration method for Monte Carlo time-dependent radiative transfer simulations. J. Comput. Phys. 172, 543–571 (2001).

    ADS  MATH  Google Scholar 

  243. Densmore, J. D., Urbatsch, T. J., Evans, T. M. & Buksas, M. W. A hybrid transport-diffusion method for Monte Carlo radiative-transfer simulations. J. Comput. Phys. 222, 485–503 (2007).

    ADS  MathSciNet  MATH  Google Scholar 

  244. Smith, A., Tsang, B. T. H., Bromm, V. & Milosavljević, M. Discrete diffusion Lyman radiative transfer. Mon. Not. R. Astron. Soc. 479, 2065–2078 (2018).

    ADS  Google Scholar 

  245. Levermore, C. D. Relating Eddington factors to flux limiters. J. Quant. Spectrosc. Radiat. Transf. 31, 149–160 (1984).

    ADS  Google Scholar 

  246. González, M., Audit, E. & Huynh, P. HERACLES: a three-dimensional radiation hydrodynamics code. Astron. Astrophys. 464, 429–435 (2007).

    ADS  Google Scholar 

  247. Rosdahl, J., Blaizot, J., Aubert, D., Stranex, T. & Teyssier, R. RAMSES-RT: radiation hydrodynamics in the cosmological context. Mon. Not. R. Astron. Soc. 436, 2188–2231 (2013).

    ADS  Google Scholar 

  248. Kannan, R. et al. AREPO-RT: radiation hydrodynamics on a moving mesh. Mon. Not. R. Astron. Soc. 485, 117–149 (2019).

    ADS  Google Scholar 

  249. Krumholz, M. R., Klein, R. I., McKee, C. F. & Bolstad, J. Equations and algorithms for mixed-frame flux-limited diffusion radiation hydrodynamics. Astrophys. J. 667, 626–643 (2007).

    ADS  Google Scholar 

  250. Finlator, K., Özel, F. & Davé, R. A new moment method for continuum radiative transfer in cosmological re-ionization. Mon. Not. R. Astron. Soc. 393, 1090–1106 (2009).

    ADS  Google Scholar 

  251. Petkova, M. & Springel, V. An implementation of radiative transfer in the cosmological simulation code GADGET. Mon. Not. R. Astron. Soc. 396, 1383–1403 (2009).

    ADS  Google Scholar 

  252. Dubroca, B. & Feugeas, J. Etude théorique et numérique d’une hiérarchie de modèles aux moments pour le transfert radiatif. C. R. Acad. Sci. Math. 329, 915–920 (1999).

    ADS  MATH  Google Scholar 

  253. Ripoll, J.-F., Dubroca, B. & Duffa, G. Modelling radiative mean absorption coefficients. Combust. Theory Model. 5, 261–274 (2001).

    ADS  MATH  Google Scholar 

  254. McKinnon, R., Torrey, P. & Vogelsberger, M. Dust formation in Milky Way-like galaxies. Mon. Not. R. Astron. Soc. 457, 3775–3800 (2016).

    ADS  Google Scholar 

  255. Aoyama, S. et al. Galaxy simulation with dust formation and destruction. Mon. Not. R. Astron. Soc. 466, 105–121 (2017).

    ADS  Google Scholar 

  256. Hou, K.-C., Hirashita, H., Nagamine, K., Aoyama, S. & Shimizu, I. Evolution of dust extinction curves in galaxy simulation. Mon. Not. R. Astron. Soc. 469, 870–885 (2017).

    ADS  Google Scholar 

  257. McKinnon, R., Torrey, P., Vogelsberger, M., Hayward, C. C. & Marinacci, F. Simulating the dust content of galaxies: successes and failures. Mon. Not. R. Astron. Soc. 468, 1505–1521 (2017).

    ADS  Google Scholar 

  258. Aoyama, S., Hou, K.-C., Hirashita, H., Nagamine, K. & Shimizu, I. Cosmological simulation with dust formation and destruction. Mon. Not. R. Astron. Soc. 478, 4905–4921 (2018).

    ADS  Google Scholar 

  259. McKinnon, R., Vogelsberger, M., Torrey, P., Marinacci, F. & Kannan, R. Simulating galactic dust grain evolution on a moving mesh. Mon. Not. R. Astron. Soc. 478, 2851–2886 (2018).

    ADS  Google Scholar 

  260. Vogelsberger, M. et al. Dust in and around galaxies: dust in cluster environments and its impact on gas cooling. Mon. Not. R. Astron. Soc. 487, 4870–4883 (2019).

    ADS  Google Scholar 

  261. Gjergo, E. et al. Dust evolution in galaxy cluster simulations. Mon. Not. R. Astron. Soc. 479, 2588–2606 (2018).

    ADS  Google Scholar 

  262. Hou, K.-C., Aoyama, S., Hirashita, H., Nagamine, K. & Shimizu, I. Dust scaling relations in a cosmological simulation. Mon. Not. R. Astron. Soc. 485, 1727–1744 (2019).

    ADS  Google Scholar 

  263. Ruszkowski, M., Lee, D., Brüggen, M., Parrish, I. & Oh, S. P. Cosmological magnetohydrodynamic simulations of cluster formation with anisotropic thermal conduction. Astrophys. J. 740, 81 (2011).

    ADS  Google Scholar 

  264. Smith, B., O’Shea, B. W., Voit, G. M., Ventimiglia, D. & Skillman, S. W. Cosmological simulations of isotropic conduction in galaxy clusters. Astrophys. J. 778, 152 (2013).

    ADS  Google Scholar 

  265. Arth, A., Dolag, K., Beck, A. M., Petkova, M. & Lesch, H. Anisotropic thermal conduction in galaxy clusters with MHD in Gadget. Preprint at (2014).

  266. Yang, H.-Y. K. & Reynolds, C. S. Interplay among cooling, agn feedback, and anisotropic conduction in the cool cores of galaxy clusters. Astrophys. J. 818, 181 (2016).

    ADS  Google Scholar 

  267. Kannan, R. et al. Increasing black hole feedback-induced quenching with anisotropic thermal conduction. Astrophys. J. Lett. 837, L18 (2017).

    ADS  Google Scholar 

  268. Parrish, I. J., McCourt, M., Quataert, E. & Sharma, P. The effects of anisotropic viscosity on turbulence and heat transport in the intracluster medium. Mon. Not. R. Astron. Soc. 422, 704–718 (2012).

    ADS  Google Scholar 

  269. Suzuki, K., Ogawa, T., Matsumoto, Y. & Matsumoto, R. Magnetohydrodynamic simulations of the formation of cold fronts in clusters of galaxies: effects of anisotropic viscosity. Astrophys. J. 768, 175 (2013).

    ADS  Google Scholar 

  270. ZuHone, J. A., Kunz, M. W., Markevitch, M., Stone, J. M. & Biffi, V. The effect of anisotropic viscosity on cold fronts in galaxy clusters. Astrophys. J. 798, 90 (2015).

    ADS  Google Scholar 

  271. Su, K.-Y. et al. Feedback first: the surprisingly weak effects of magnetic fields, viscosity, conduction and metal diffusion on sub-L* galaxy formation. Mon. Not. R. Astron. Soc. 471, 144–166 (2017).

    ADS  Google Scholar 

  272. Balbus, S. A. Stability, instability, and “backward” transport in stratified fluids. Astrophys. J. 534, 420–427 (2000).

    ADS  Google Scholar 

  273. Quataert, E. Buoyancy instabilities in weakly magnetized low-collisionality plasmas. Astrophys. J. 673, 758–762 (2008).

    ADS  Google Scholar 

  274. Barnes, D. J. et al. Enhancing AGN efficiency and cool-core formation with anisotropic thermal conduction. Preprint at (2018).

  275. Torrey, P. et al. Synthetic galaxy images and spectra from the Illustris simulation. Mon. Not. R. Astron. Soc. 447, 2753–2771 (2015).

    ADS  Google Scholar 

  276. Trayford, J. W. et al. Optical colours and spectral indices of z = 0.1 eagle galaxies with the 3D dust radiative transfer code skirt. Mon. Not. R. Astron. Soc. 470, 771–799 (2017).

    ADS  Google Scholar 

  277. Hernquist, L., Katz, N., Weinberg, D. H. & Miralda-Escudé, J. The Lyman-alpha forest in the cold dark matter model. Astrophys. J. Lett. 457, L51 (1996).

    ADS  Google Scholar 

  278. Katz, N. & Gunn, J. E. Dissipational galaxy formation. I — effects of gas dynamics. Astrophys. J. 377, 365–381 (1991).

    ADS  Google Scholar 

  279. Navarro, J. F. & Benz, W. Dynamics of cooling gas in galactic dark halos. Astrophys. J. 380, 320–329 (1991).

    ADS  Google Scholar 

  280. Katz, N. Dissipational galaxy formation. II — effects of star formation. Astrophys. J. 391, 502–517 (1992).

    ADS  Google Scholar 

  281. Katz, N., Hernquist, L. & Weinberg, D. H. Galaxies and gas in a cold dark matter universe. Astrophys. J. Lett. 399, L109–L112 (1992).

    ADS  Google Scholar 

  282. Navarro, J. F. & Steinmetz, M. The effects of a photoionizing ultraviolet background on the formation of disk galaxies. Astrophys. J. 478, 13–28 (1997).

    ADS  Google Scholar 

  283. Navarro, J. F. & Steinmetz, M. Dark halo and disk galaxy scaling laws in hierarchical universes. Astrophys. J. 538, 477–488 (2000).

    ADS  Google Scholar 

  284. Abadi, M. G., Navarro, J. F., Steinmetz, M. & Eke, V. R. Simulations of galaxy formation in a Λ cold dark matter universe. I. Dynamical and photometric properties of a simulated disk galaxy. Astrophys. J. 591, 499–514 (2003).

    ADS  Google Scholar 

  285. Scannapieco, C., Tissera, P. B., White, S. D. M. & Springel, V. Effects of supernova feedback on the formation of galaxy discs. Mon. Not. R. Astron. Soc. 389, 1137–1149 (2008).

  286. Grand, R. J. J. et al. The Auriga Project: the properties and formation mechanisms of disc galaxies across cosmic time. Mon. Not. R. Astron. Soc. 467, 179–207 (2017).

    ADS  Google Scholar 

  287. Kaviraj, S. et al. The Horizon-AGN simulation: evolution of galaxy properties over cosmic time. Mon. Not. R. Astron. Soc. 467, 4739–4752 (2017).

    ADS  Google Scholar 

  288. Schechter, P. An analytic expression for the luminosity function for galaxies. Astrophys. J. 203, 297–306 (1976).

    ADS  Google Scholar 

  289. Panter, B., Jimenez, R., Heavens, A. F. & Charlot, S. The star formation histories of galaxies in the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 378, 1550–1564 (2007).

    ADS  Google Scholar 

  290. Pozzetti, L. et al. zCOSMOS — 10k-bright spectroscopic sample. The bimodality in the galaxy stellar mass function: exploring its evolution with redshift. Astron. Astrophys 523, A13 (2010).

    Google Scholar 

  291. Baldry, I. K. et al. Galaxy and mass assembly (GAMA): the galaxy stellar mass function at z < 0.06. Mon. Not. R. Astron. Soc. 421, 621–634 (2012).

    ADS  Google Scholar 

  292. Ilbert, O. et al. Mass assembly in quiescent and star-forming galaxies since z 4 from UltraVISTA. Astron. Astrophys. 556, A55 (2013).

    Google Scholar 

  293. Muzzin, A. et al. The evolution of the stellar mass functions of star-forming and quiescent galaxies to z = 4 from the COSMOS/UltraVISTA survey. Astrophys. J. 777, 18 (2013).

    ADS  Google Scholar 

  294. Weigel, A. K., Schawinski, K. & Bruderer, C. Stellar mass functions: methods, systematics and results for the local universe. Mon. Not. R. Astron. Soc. 459, 2150–2187 (2016).

    ADS  Google Scholar 

  295. Dekel, A. & Silk, J. The origin of dwarf galaxies, cold dark matter, and biased galaxy formation. Astrophys. J. 303, 39 (1986).

    ADS  Google Scholar 

  296. Larson, R. B. Effects of supernovae on the early evolution of galaxies. Mon. Not. R. Astron. Soc. 169, 229–246 (1974).

    ADS  Google Scholar 

  297. White, S. D. M. & Frenk, C. S. Galaxy formation through hierarchical clustering. Astrophys. J. 379, 52 (1991).

    ADS  Google Scholar 

  298. Pillepich, A. et al. First results from the IllustrisTNG simulations: the stellar mass content of groups and clusters of galaxies. Mon. Not. R. Astron. Soc. 475, 648–675 (2018).

    ADS  Google Scholar 

  299. Werk, J. K. et al. The COS-Halos survey: physical conditions and baryonic mass in the low-redshift circumgalactic medium. Astrophys. J. 792, 8 (2014).

    ADS  Google Scholar 

  300. Werk, J. K. et al. The COS-Halos survey: origins of the highly ionized circumgalactic medium of star-forming galaxies. Astrophys. J. 833, 54 (2016).

    ADS  Google Scholar 

  301. Stern, J., Hennawi, J. F., Prochaska, J. X. & Werk, J. K. A universal density structure for circumgalactic gas. Astrophys. J. 830, 87 (2016).

    ADS  Google Scholar 

  302. Rubin, K. H. R., Diamond-Stanic, A. M., Coil, A. L., Crighton, N. H. M. & Stewart, K. R. Galaxies probing galaxies in PRIMUS. II. The coherence scale of the cool circumgalactic medium. Astrophys. J. 868, 142 (2018).

    ADS  Google Scholar 

  303. van de Voort, F., Springel, V., Mandelker, N., van den Bosch, F. C. & Pakmor, R. Cosmological simulations of the circumgalactic medium with 1 kpc resolution: enhanced H i column densities. Mon. Not. R. Astron. Soc. 482, L85–L89 (2019).

    ADS  Google Scholar 

  304. Suresh, J., Nelson, D., Genel, S., Rubin, K. H. R. & Hernquist, L. Zooming in on accretion — II. Cold circumgalactic gas simulated with a super-Lagrangian refinement scheme. Mon. Not. R. Astron. Soc. 483, 4040–4059 (2019).

    ADS  Google Scholar 

  305. Peeples, M. S. et al. Figuring out Gas & Galaxies in Enzo (FOGGIE). I. Resolving simulated circumgalactic absorption at 2 ≤ z ≤ 2.5. Astrophys. J. 873, 129 (2019).

    ADS  Google Scholar 

  306. Rasia, E. et al. Cool core clusters from cosmological simulations. Astrophys. J. Lett. 813, L17 (2015).

    ADS  Google Scholar 

  307. Planelles, S. et al. On the role of AGN feedback on the thermal and chemodynamical properties of the hot intracluster medium. Mon. Not. R. Astron. Soc. 438, 195–216 (2014).

    ADS  Google Scholar 

  308. Biffi, V. et al. On the nature of hydrostatic equilibrium in galaxy clusters. Astrophys. J. 827, 112 (2016).

    ADS  Google Scholar 

  309. Vogelsberger, M. et al. The uniformity and time-invariance of the intra-cluster metal distribution in galaxy clusters from the IllustrisTNG simulations. Mon. Not. R. Astron. Soc. 474, 2073–2093 (2018).

    ADS  Google Scholar 

  310. Barnes, D. J. et al. A census of cool-core galaxy clusters in IllustrisTNG. Mon. Not. R. Astron. Soc. 481, 1809–1831 (2018).

    ADS  Google Scholar 

  311. Meneux, B. et al. The VIMOS-VLT Deep Survey (VVDS). The dependence of clustering on galaxy stellar mass at z ~ 1. Astron. Astrophys. 478, 299–310 (2008).

    ADS  Google Scholar 

  312. Foucaud, S. et al. Clustering properties of galaxies selected in stellar mass: breaking down the link between luminous and dark matter in massive galaxies from z = 0 to z = 2. Mon. Not. R. Astron. Soc. 406, 147–164 (2010).

    ADS  Google Scholar 

  313. Wake, D. A. et al. Galaxy clustering in the NEWFIRM medium band survey: the relationship between stellar mass and dark matter halo mass at 1 < z < 2. Astrophys. J. 728, 46 (2011).

    ADS  Google Scholar 

  314. Artale, M. C. et al. Small-scale galaxy clustering in the eagle simulation. Mon. Not. R. Astron. Soc. 470, 1771–1787 (2017).

    ADS  Google Scholar 

  315. Marulli, F. et al. The VIMOS Public Extragalactic Redshift Survey (VIPERS). Luminosity and stellar mass dependence of galaxy clustering at 0.5 < z < 1.1. Astron. Astrophys. 557, A17 (2013).

    Google Scholar 

  316. Shen, S. et al. The size distribution of galaxies in the Sloan Digital Sky Survey. Mon. Not. R. Astron. Soc. 343, 978–994 (2003).

    ADS  Google Scholar 

  317. Kormendy, J. & Ho, L. C. Coevolution (or not) of supermassive black holes and host galaxies. Annu. Rev. Astron. Astrophys. 51, 511–653 (2013).

    ADS  Google Scholar 

  318. Tremonti, C. A. et al. The origin of the mass–metallicity relation: insights from 53,000 star-forming galaxies in the Sloan Digital Sky Survey. Astrophys. J. 613, 898–913 (2004).

    ADS  Google Scholar 

  319. Davé, R., Rafieferantsoa, M. H., Thompson, R. J. & Hopkins, P. F. MUFASA: galaxy star formation, gas, and metal properties across cosmic time. Mon. Not. R. Astron. Soc. 467, 115–132 (2017).

    ADS  Google Scholar 

  320. De Rossi, M. E., Bower, R. G., Font, A. S., Schaye, J. & Theuns, T. Galaxy metallicity scaling relations in the EAGLE simulations. Mon. Not. R. Astron. Soc. 472, 3354–3377 (2017).

    ADS  Google Scholar 

  321. Torrey, P. et al. The evolution of the mass–metallicity relation and its scatter in IllustrisTNG. Mon. Not. R. Astron. Soc. 484, 5587–5607 (2019).

    ADS  Google Scholar 

  322. Torrey, P. et al. Similar star formation rate and metallicity variability time-scales drive the fundamental metallicity relation. Mon. Not. R. Astron. Soc. 477, L16–L20 (2018).

    ADS  Google Scholar 

  323. Trayford, J. W. et al. Colours and luminosities of z = 0.1 galaxies in the EAGLE simulation. Mon. Not. R. Astron. Soc. 452, 2879–2896 (2015).

    ADS  Google Scholar 

  324. Nelson, D. et al. First results from the IllustrisTNG simulations: the galaxy colour bimodality. Mon. Not. R. Astron. Soc. 475, 624–647 (2018).

    ADS  Google Scholar 

  325. Fall, S. M. & Efstathiou, G. Formation and rotation of disc galaxies with haloes. Mon. Not. R. Astron. Soc. 193, 189–206 (1980).

    ADS  Google Scholar 

  326. Mo, H. J., Mao, S. & White, S. D. M. The formation of galactic discs. Mon. Not. R. Astron. Soc. 295, 319–336 (1998).

    ADS  Google Scholar 

  327. Scannapieco, C., White, S. D. M., Springel, V. & Tissera, P. B. The formation and survival of discs in a ΛCDM universe. Mon. Not. R. Astron. Soc. 396, 696696–696708 (2009).

    Google Scholar 

  328. Balogh, M. L., Pearce, F. R., Bower, R. G. & Kay, S. T. Revisiting the cosmic cooling crisis. Mon. Not. R. Astron. Soc. 326, 1228–1234 (2001).

    ADS  Google Scholar 

  329. Brook, C. B. et al. Hierarchical formation of bulgeless galaxies: why outflows have low angular momentum. Mon. Not. R. Astron. Soc. 415, 1051–1060 (2011).

    ADS  Google Scholar 

  330. Okamoto, T., Eke, V. R., Frenk, C. S. & Jenkins, A. Effects of feedback on the morphology of galaxy discs. Mon. Not. R. Astron. Soc. 363, 1299–1314 (2005).

    ADS  Google Scholar 

  331. Brooks, A. M. et al. Interpreting the evolution of the size–luminosity relation for disk galaxies from redshift 1 to the present. Astrophys. J. 728, 51 (2011).

    ADS  Google Scholar 

  332. Guedes, J., Callegari, S., Madau, P. & Mayer, L. Forming realistic late-type spirals in a ΛCDM universe: the Eris simulation. Astrophys. J. 742, 76 (2011).

    ADS  Google Scholar 

  333. Aumer, M., White, S. D. M., Naab, T. & Scannapieco, C. Towards a more realistic population of bright spiral galaxies in cosmological simulations. Mon. Not. R. Astron. Soc. 434, 3142–3164 (2013).

    ADS  Google Scholar 

  334. Marinacci, F., Pakmor, R. & Springel, V. The formation of disc galaxies in high-resolution moving-mesh cosmological simulations. Mon. Not. R. Astron. Soc. 437, 1750–1775 (2014).

    ADS  Google Scholar 

  335. Wetzel, A. R. et al. Reconciling dwarf galaxies with ΛCDM cosmology: simulating a realistic population of satellites around a milky way-mass galaxy. Astrophys. J. Lett. 827, L23 (2016).

    ADS  Google Scholar 

  336. Pakmor, R., Marinacci, F. & Springel, V. Magnetic fields in cosmological simulations of disk galaxies. Astrophys. J. 783, L20 (2014).

    ADS  Google Scholar 

  337. Beck, R. Magnetic fields in spiral galaxies. Astron. Astropysics Rev. 24, 4 (2015).

    ADS  Google Scholar 

  338. Rieder, M. & Teyssier, R. A small-scale dynamo in feedback-dominated galaxies as the origin of cosmic magnetic fields — I. The kinematic phase. Mon. Not. R. Astron. Soc. 457, 1722–1738 (2016).

    ADS  Google Scholar 

  339. Rieder, M. & Teyssier, R. A small-scale dynamo in feedback-dominated galaxies — II. The saturation phase and the final magnetic configuration. Mon. Not. R. Astron. Soc. 471, 2674–2686 (2017).

    ADS  Google Scholar 

  340. Rieder, M. & Teyssier, R. A small-scale dynamo in feedback-dominated galaxies — III. Cosmological simulations. Mon. Not. R. Astron. Soc. 472, 4368–4373 (2017).

    ADS  Google Scholar 

  341. Naab, T. et al. The ATLAS3D project — XXV. Two-dimensional kinematic analysis of simulated galaxies and the cosmological origin of fast and slow rotators. Mon. Not. R. Astron. Soc. 444, 3357–3387 (2014).

    ADS  Google Scholar 

  342. Kobayashi, C. GRAPE-SPH chemodynamical simulation of elliptical galaxies — II. Scaling relations and the fundamental plane. Mon. Not. R. Astron. Soc. 361, 1216–1226 (2005).

    ADS  Google Scholar 

  343. Feldmann, R., Carollo, C. M. & Mayer, L. The Hubble sequence in groups: the birth of the early-type galaxies. Astrophys. J. 736, 88 (2011).

    ADS  Google Scholar 

  344. Kobayashi, C. GRAPE-SPH chemodynamical simulation of elliptical galaxies — I. Evolution of metallicity gradients. Mon. Not. R. Astron. Soc. 347, 740–758 (2004).

    ADS  Google Scholar 

  345. Oser, L., Ostriker, J. P., Naab, T., Johansson, P. H. & Burkert, A. The two phases of galaxy formation. Astrophys. J. 725, 2312–2323 (2010).

    ADS  Google Scholar 

  346. Huang, S., Ho, L. C., Peng, C. Y., Li, Z.-Y. & Barth, A. J. Fossil evidence for the two-phase formation of elliptical galaxies. Astrophys. J. Lett. 768, L28 (2013).

    ADS  Google Scholar 

  347. Rodriguez-Gomez, V. et al. The stellar mass assembly of galaxies in the Illustris simulation: growth by mergers and the spatial distribution of accreted stars. Mon. Not. R. Astron. Soc. 458, 2371–2390 (2016).

    ADS  Google Scholar 

  348. Clauwens, B., Schaye, J., Franx, M. & Bower, R. G. The three phases of galaxy formation. Mon. Not. R. Astron. Soc. 478, 3994–4009 (2018).

    ADS  Google Scholar 

  349. Lagos, Cd. P. et al. The connection between mass, environment, and slow rotation in simulated galaxies. Mon. Not. R. Astron. Soc. 476, 4327–4345 (2018).

    ADS  Google Scholar 

  350. Schulze, F. et al. Kinematics of simulated galaxies — I. Connecting dynamical and morphological properties of early-type galaxies at different redshifts. Mon. Not. R. Astron. Soc. 480, 4636–4658 (2018).

    ADS  Google Scholar 

  351. Green, A. M., Hofmann, S. & Schwarz, D. J. The power spectrum of SUSY-CDM on subgalactic scales. Mon. Not. R. Astron. Soc. 353, L23–L27 (2004).

    ADS  Google Scholar 

  352. Bode, P., Ostriker, J. P. & Turok, N. Halo formation in warm dark matter models. Astrophys. J. 556, 93–107 (2001).

    ADS  Google Scholar 

  353. Carlson, E. D., Machacek, M. E. & Hall, L. J. Self-interacting dark matter. Astrophys. J. 398, 43–52 (1992).

    ADS  Google Scholar 

  354. Spergel, D. N. & Steinhardt, P. J. Observational evidence for self-interacting cold dark matter. Phys. Rev. Lett. 84, 3760–3763 (2000).

    ADS  Google Scholar 

  355. Vogelsberger, M., Sijacki, D., Kereš, D., Springel, V. & Hernquist, L. Moving mesh cosmology: numerical techniques and global statistics. Mon. Not. R. Astron. Soc. 425, 3024–3057 (2012).

    ADS  Google Scholar 

  356. Cyr-Racine, F.-Y. et al. ETHOS — an effective theory of structure formation: from dark particle physics to the matter distribution of the Universe. Phys. Rev. D 93, 123527 (2016).

    ADS  MathSciNet  Google Scholar 

  357. Vogelsberger, M. et al. ETHOS — an effective theory of structure formation: dark matter physics as a possible explanation of the small-scale CDM problems. Mon. Not. R. Astron. Soc. 460, 1399–1416 (2016).

    ADS  Google Scholar 

  358. Vogelsberger, M., Zavala, J. & Loeb, A. Subhaloes in self-interacting galactic dark matter haloes. Mon. Not. R. Astron. Soc. 423, 3740–3752 (2012).

    ADS  Google Scholar 

  359. Peter, A. H. G., Rocha, M., Bullock, J. S. & Kaplinghat, M. Cosmological simulations with self-interacting dark matter — II. Halo shapes versus observations. Mon. Not. R. Astron. Soc. 430, 105–120 (2013).

    ADS  Google Scholar 

  360. Fry, A. B. et al. All about baryons: revisiting SIDM predictions at small halo masses. Mon. Not. R. Astron. Soc. 452, 1468–1479 (2015).

    ADS  Google Scholar 

  361. Elbert, O. D. et al. Core formation in dwarf haloes with self-interacting dark matter: no fine-tuning necessary. Mon. Not. R. Astron. Soc. 453, 29–37 (2015).

    ADS  Google Scholar 

  362. Hui, L., Ostriker, J. P., Tremaine, S. & Witten, E. Ultralight scalars as cosmological dark matter. Phys. Rev. D. 95, 043541 (2017).

    ADS  Google Scholar 

  363. Lee, J.-W. & Koh, I.-G. Galactic halos as boson stars. Phys. Rev. D 53, 2236–2239 (1996).

    ADS  Google Scholar 

  364. Hu, W., Barkana, R. & Gruzinov, A. Fuzzy cold dark matter: the wave properties of ultralight particles. Phys. Rev. Lett. 85, 1158–1161 (2000).

    ADS  Google Scholar 

  365. Peebles, P. J. E. Fluid dark matter. Astrophys. J. Lett. 534, L127–L129 (2000).

    ADS  Google Scholar 

  366. Chavanis, P.-H. Mass-radius relation of Newtonian self-gravitating Bose–Einstein condensates with short-range interactions. I. Analytical results. Phys. Rev. D 84, 043531 (2011).

    ADS  Google Scholar 

  367. Suárez, A., Robles, V. H. & Matos, T. in Accelerated Cosmic Expansion: Astrophysics and Space Science Proceedings Vol. 38 (eds Moreno González, C. et al.) 107 (Springer, 2014).

  368. Matos, T., Vázquez-González, A. & Magaña, J. Phi squared as dark matter. Mon. Not. R. Astron. Soc. 393, 1359–1369 (2009).

    ADS  Google Scholar 

  369. Lundgren, A. P., Bondarescu, M., Bondarescu, R. & Balakrishna, J. Lukewarm dark matter: Bose condensation of ultralight particles. Astrophys. J. Lett. 715, L35–L39 (2010).

    ADS  Google Scholar 

  370. Robles, V. H. & Matos, T. Exact solution to finite temperature sfdm: natural cores without feedback. Astrophys. J. 763, 19 (2013).

    ADS  Google Scholar 

  371. Seidel, E. & Suen, W.-M. Dynamical evolution of boson stars: perturbing the ground state. Phys. Rev. D 42, 384–403 (1990).

    ADS  Google Scholar 

  372. Sin, S.-J. Late-time phase transition and the galactic halo as a Bose liquid. Phys. Rev. D. 50, 3650–3654 (1994).

    ADS  Google Scholar 

  373. Mocz, P. & Succi, S. Numerical solution of the nonlinear Schrödinger equation using smoothed-particle hydrodynamics. Phys. Rev. D 91, 053304 (2015).

    ADS  Google Scholar 

  374. Nori, M. & Baldi, M. AX-GADGET: a new code for cosmological simulations of Fuzzy Dark Matter and Axion models. Mon. Not. R. Astron. Soc. 478, 3935–3951 (2018).

    ADS  Google Scholar 

  375. Copeland, E. J., Sami, M. & Tsujikawa, S. Dynamics of dark energy. Int. J. Mod. Phys. D 15, 1753–1935 (2006).

    ADS  MathSciNet  MATH  Google Scholar 

  376. Baldi, M. Dark energy simulations. Phys. Dark Universe 1, 162–193 (2012).

    ADS  Google Scholar 

  377. Linder, E. V. & Jenkins, A. Cosmic structure growth and dark energy. Mon. Not. R. Astron. Soc. 346, 573–583 (2003).

    ADS  Google Scholar 

  378. Grossi, M. & Springel, V. The impact of early dark energy on non-linear structure formation. Mon. Not. R. Astron. Soc. 394, 1559–1574 (2009).

    ADS  Google Scholar 

  379. Penzo, C., Macciò, A. V., Casarini, L., Stinson, G. S. & Wadsley, J. Dark MaGICC: the effect of dark energy on disc galaxy formation. Cosmology does matter. Mon. Not. R. Astron. Soc. 442, 176–186 (2014).

    ADS  Google Scholar 

  380. Sefusatti, E. & Vernizzi, F. Cosmological structure formation with clustering quintessence. J. Cosmol. Astropart. Phys. 2011, 047 (2011).

    Google Scholar 

  381. Amendola, L. & Tocchini-Valentini, D. Stationary dark energy: the present universe as a global attractor. Phys. Rev. D 64, 043509 (2001).

    ADS  Google Scholar 

  382. Macciò, A. V., Quercellini, C., Mainini, R., Amendola, L. & Bonometto, S. A. Coupled dark energy: parameter constraints from N-body simulations. Phys. Rev. D 69, 123516 (2004).

    ADS  Google Scholar 

  383. Baldi, M., Pettorino, V., Robbers, G. & Springel, V. Hydrodynamical N-body simulations of coupled dark energy cosmologies. Mon. Not. R. Astron. Soc. 403, 1684–1702 (2010).

    ADS  Google Scholar 

  384. Li, B. & Barrow, J. D. N-body simulations for coupled scalar-field cosmology. Phys. Rev. D 83, 024007 (2011).

    ADS  Google Scholar 

  385. Li, B. & Barrow, J. D. On the effects of coupled scalar fields on structure formation. Mon. Not. R. Astron. Soc. 413, 262–270 (2011).

    ADS  Google Scholar 

  386. Milgrom, M. A modification of the Newtonian dynamics as a possible alternative to the hidden mass hypothesis. Astrophys. J. 270, 365–370 (1983).

    ADS  Google Scholar 

  387. Famaey, B. & McGaugh, S. S. Modified Newtonian dynamics (MOND): observational phenomenology and relativistic extensions. Living Rev. Relativ. 15, 10 (2012).

    ADS  Google Scholar 

  388. Bekenstein, J. D. Relativistic gravitation theory for the modified Newtonian dynamics paradigm. Phys. Rev. D 70, 083509 (2004).

    ADS  Google Scholar 

  389. Skordis, C. Generalizing tensor-vector-scalar cosmology. Phys. Rev. D 77, 123502 (2008).

    ADS  MathSciNet  Google Scholar 

  390. McGaugh, S. S., Lelli, F. & Schombert, J. M. Radial acceleration relation in rotationally supported galaxies. Phys. Rev. Lett. 117, 201101 (2016).

    ADS  Google Scholar 

  391. Lelli, F., McGaugh, S. S., Schombert, J. M. & Pawlowski, M. S. One law to rule them all: the radial acceleration relation of galaxies. Astrophys. J. 836, 152 (2017).

    ADS  Google Scholar 

  392. Keller, B. W. & Wadsley, J. W. Λ CDM is consistent with SPARC radial acceleration relation. Astrophys. J. 835, L17 (2017).

    ADS  Google Scholar 

  393. Ludlow, A. D. et al. Mass-discrepancy acceleration relation: a natural outcome of galaxy formation in cold dark matter halos. Phys. Rev. Lett. 118, 161103 (2017).

    ADS  Google Scholar 

  394. Dutton, A. A., Macciò, A. V., Obreja, A. & Buck, T. NIHAO — XVIII. Origin of the MOND phenomenology of galactic rotation curves in a Λ CDM universe. Mon. Not. R. Astron. Soc. 485, 1886–1899 (2019).

    ADS  Google Scholar 

  395. Llinares, C. Simulation techniques for modified gravity. Int. J. Mod. Phys. D 27, 1848003 (2018).

    ADS  MathSciNet  MATH  Google Scholar 

  396. Li, B., Zhao, G.-B., Teyssier, R. & Koyama, K. ECOSMOG: an efficient code for simulating modified gravity. J. Cosmol. Astropart. Phys. 1, 051 (2012).

    ADS  Google Scholar 

  397. Puchwein, E., Baldi, M. & Springel, V. Modified-Gravity-GADGET: a new code for cosmological hydrodynamical simulations of modified gravity models. Mon. Not. R. Astron. Soc. 436, 348–360 (2013).

    ADS  Google Scholar 

  398. Llinares, C., Mota, D. F. & Winther, H. A. ISIS: a new N-body cosmological code with scalar fields based on RAMSES. Code presentation and application to the shapes of clusters. Astron. Astrophys. 562, A78 (2014).

    ADS  Google Scholar 

  399. Brax, P., Davis, A.-C., Li, B., Winther, H. A. & Zhao, G.-B. Systematic simulations of modified gravity: symmetron and dilaton models. J. Cosmol. Astropart. Phys. 2012, 002 (2012).

    Google Scholar 

  400. Barreira, A., Li, B., Hellwing, W. A., Baugh, C. M. & Pascoli, S. Nonlinear structure formation in the cubic Galileon gravity model. J. Cosmol. Astropart. Phys. 2013, 027 (2013).

    Google Scholar 

  401. Winther, H. A. et al. Modified gravity N-body code comparison project. Mon. Not. R. Astron. Soc. 454, 4208–4234 (2015).

    ADS  Google Scholar 

  402. Fontanot, F., Puchwein, E., Springel, V. & Bianchi, D. Semi-analytic galaxy formation in f(R)-gravity cosmologies. Mon. Not. R. Astron. Soc. 436, 2672–2679 (2013).

    ADS  Google Scholar 

  403. Jennings, E., Baugh, C. M., Li, B., Zhao, G.-B. & Koyama, K. Redshift-space distortions in f(R) gravity. Mon. Not. R. Astron. Soc. 425, 2128–2143 (2012).

    ADS  Google Scholar 

  404. Naik, A. P., Puchwein, E., Davis, A.-C. & Arnold, C. Imprints of chameleon f(R) gravity on galaxy rotation curves. Mon. Not. R. Astron. Soc. 480, 5211–5225 (2018).

    ADS  Google Scholar 

  405. Lombriser, L. & Peñarrubia, J. How chameleons core dwarfs with cusps. Phys. Rev. D 91, 084022 (2015).

    ADS  Google Scholar 

  406. Arnold, C., Leo, M. & Li, B. Realistic simulations of galaxy formation in f(R) modified gravity. Nat. Astron. 3, 945–954 (2019).

  407. Davis, A.-C., Lim, E. A., Sakstein, J. & Shaw, D. J. Modified gravity makes galaxies brighter. Phys. Rev. D 85, 123006 (2012).

    ADS  Google Scholar 

  408. Stadel, J. et al. Quantifying the heart of darkness with GHALO — a multibillion particle simulation of a galactic halo. Mon. Not. R. Astron. Soc. 398, L21–L25 (2009).

    ADS  Google Scholar 

  409. Garrison-Kimmel, S., Boylan-Kolchin, M., Bullock, J. S. & Lee, K. ELVIS: exploring the local volume in simulations. Mon. Not. R. Astron. Soc. 438, 2578–2596 (2014).

    ADS  Google Scholar 

  410. Dolag, K. The magneticum simulations, from galaxies to galaxy clusters. IAU Highl. Astron. 29, 2250156 (2015).

    Google Scholar 

  411. Khandai, N. et al. The massiveblack-II simulation: the evolution of haloes and galaxies to z ~ 0. Mon. Not. R. Astron. Soc. 450, 1349–1374 (2015).

    ADS  Google Scholar 

  412. Teyssier, R. Cosmological hydrodynamics with adaptive mesh refinement. A new high resolution code called RAMSES. Astron. Astrophys. 385, 337–364 (2002).

    ADS  Google Scholar 

  413. Springel, V. The cosmological simulation code GADGET-2. Mon. Not. R. Astron. Soc. 364, 1105–1134 (2005).

    ADS  Google Scholar 

  414. Bryan, G. L. et al. ENZO: an adaptive mesh refinement code for astrophysics. Astrophys. J. Suppl. 211, 19 (2014).

    ADS  Google Scholar 

  415. Jetley, P., Kale, L. V., Gioachin, F., Quinn, T. & Mendes, C. Massively parallel cosmological simulations with changa. In 2008 IEEE International Parallel & Distributed Processing Symposium 1–12; https://doi.ieeecomputersociety.org/10.1109/IPDPS.2008.4536319 (IEEE Computer Society, 2008).

  416. Gioachin, F., Kalé, L. V., Quinn, T. R., Jetley, P. & Wesolowski, L. Scaling hierarchical N-body simulations on GPU clusters. In SC Conference 1–11; https://doi.ieeecomputersociety.org/10.1109/SC.2010.49 (IEEE Computer Society, 2010).

  417. Menon, H. et al. Adaptive techniques for clustered N-body cosmological simulations. Comput. Astrophys. Cosmol. 2, 1 (2015).

    ADS  Google Scholar 

  418. Habib, S. et al. HACC: simulating sky surveys on state-of-the-art supercomputing architectures. New Astron. 42, 49–65 (2016).

    ADS  Google Scholar 

  419. Potter, D., Stadel, J. & Teyssier, R. PKDGRAV3: beyond trillion particle cosmological simulations for the next era of galaxy surveys. Comput. Astrophys. Cosmol. 4, 2 (2017).

    ADS  Google Scholar 

  420. Wadsley, J. W., Keller, B. W. & Quinn, T. R. Gasoline2: a modern smoothed particle hydrodynamics code. Mon. Not. R. Astron. Soc. 471, 2357–2369 (2017).

    ADS  Google Scholar 

  421. Schaller, M., Gonnet, P., Chalk, A. B. G. & Draper, P. W. SWIFT: SPH with inter-dependent fine-grained tasking. GitHub https://github.com/SWIFTSIM/swiftsim (2018).

  422. Springel, V. et al. Simulations of the formation, evolution and clustering of galaxies and quasars. Nature 435, 629–636 (2005).

    ADS  Google Scholar 

  423. Boylan-Kolchin, M., Springel, V., White, S. D. M., Jenkins, A. & Lemson, G. Resolving cosmic structure formation with the Millennium-II simulation. Mon. Not. R. Astron. Soc. 398, 1150–1164 (2009).

    ADS  Google Scholar 

  424. Teyssier, R. et al. Full-sky weak-lensing simulation with 70 billion particles. Astron. Astrophys. 497, 335–341 (2009).

    ADS  Google Scholar 

  425. Klypin, A. A., Trujillo-Gomez, S. & Primack, J. Dark matter halos in the standard cosmological model: results from the bolshoi simulation. Astrophys. J. 740, 102 (2011).

    ADS  Google Scholar 

  426. Alimi, J.-M. et al. DEUS full observable ΛCDM universe simulation: the numerical challenge. Preprint at arXiv https://arxiv.org/abs/1206.2838 (2012).

  427. Prada, F., Klypin, A. A., Cuesta, A. J., Betancort-Rijo, J. E. & Primack, J. Halo concentrations in the standard Λ cold dark matter cosmology. Mon. Not. R. Astron. Soc. 423, 3018–3030 (2012).

    ADS  Google Scholar 

  428. Ishiyama, T. et al. The v 2GC simulations: quantifying the dark side of the universe in the Planck cosmology. Publ. Astron. Soc. Jpn 67, 61 (2015).

    ADS  Google Scholar 

  429. Diemand, J. et al. Clumps and streams in the local dark matter distribution. Nature 454, 735–738 (2008).

    ADS  Google Scholar 

  430. Libeskind, N. I. et al. Constrained simulations of the local group: on the radial distribution of substructures. Mon. Not. R. Astron. Soc. 401, 1889–1897 (2010).

    ADS  Google Scholar 

  431. Hellwing, W. A. et al. The Copernicus Complexio: a high-resolution view of the small-scale Universe. Mon. Not. R. Astron. Soc. 457, 3492–3509 (2016).

    ADS  Google Scholar 

  432. Dubois, Y. et al. Dancing in the dark: galactic properties trace spin swings along the cosmic web. Mon. Not. R. Astron. Soc. 444, 1453–1468 (2014).

    ADS  Google Scholar 

  433. Feng, Y. et al. The BlueTides simulation: first galaxies and reionization. Mon. Not. R. Astron. Soc. 455, 2778–2791 (2016).

    ADS  Google Scholar 

  434. Davé, R., Thompson, R. & Hopkins, P. F. MUFASA: galaxy formation simulations with meshless hydrodynamics. Mon. Not. R. Astron. Soc. 462, 3265–3284 (2016).

    ADS  Google Scholar 

  435. McCarthy, I. G., Schaye, J., Bird, S. & Le Brun, A. M. C. The BAHAMAS project: calibrated hydrodynamical simulations for large-scale structure cosmology. Mon. Not. R. Astron. Soc. 465, 2936–2965 (2017).

    ADS  Google Scholar 

  436. Tremmel, M. et al. The ROMULUS cosmological simulations: a physical approach to the formation, dynamics and accretion models of SMBHs. Mon. Not. R. Astron. Soc. 470, 1121–1139 (2017).

    ADS  Google Scholar 

  437. Sawala, T. et al. The APOSTLE simulations: solutions to the Local Group’s cosmic puzzles. Mon. Not. R. Astron. Soc. 457, 1931–1943 (2016).

    ADS  Google Scholar 

  438. Barnes, D. J. et al. The redshift evolution of massive galaxy clusters in the MACSIS simulations. Mon. Not. R. Astron. Soc. 465, 213–233 (2017).

    ADS  Google Scholar 

  439. Cui, W. et al. The three hundred project: a large catalogue of theoretically modelled galaxy clusters for cosmological and astrophysical applications. Mon. Not. R. Astron. Soc. 480, 2898–2915 (2018).

    ADS  Google Scholar 

  440. Henden, N. A., Puchwein, E., Shen, S. & Sijacki, D. The FABLE simulations: a feedback model for galaxies, groups, and clusters. Mon. Not. R. Astron. Soc. 479, 5385–5412 (2018).

    ADS  Google Scholar 

  441. Tremmel, M. et al. Introducing ROMULUSC: a cosmological simulation of a galaxy cluster with an unprecedented resolution. Mon. Not. R. Astron. Soc. 483, 3336–3362 (2019).

    ADS  Google Scholar 

  442. Kauffmann, G., White, S. D. M. & Guiderdoni, B. The formation and evolution of galaxies within merging dark matter haloes. Mon. Not. R. Astron. Soc. 264, 201–218 (1993).

    ADS  Google Scholar 

  443. Somerville, R. S. & Primack, J. R. Semi-analytic modelling of galaxy formation: the local Universe. Mon. Not. R. Astron. Soc. 310, 1087–1110 (1999).

    ADS  Google Scholar 

  444. Bower, R. G. et al. Breaking the hierarchy of galaxy formation. Mon. Not. R. Astron. Soc. 370, 645–655 (2006).

    ADS  Google Scholar 

  445. Croton, D. J. et al. The many lives of active galactic nuclei: cooling flows, black holes and the luminosities and colours of galaxies. Mon. Not. R. Astron. Soc. 365, 11–28 (2006).

    ADS  Google Scholar 

  446. Guo, Q. et al. From dwarf spheroidals to cD galaxies: simulating the galaxy population in a ΛCDM cosmology. Mon. Not. R. Astron. Soc. 413, 101–131 (2011).

    ADS  Google Scholar 

  447. Bullock, J. S. & Boylan-Kolchin, M. Small-scale challenges to the ΛCDM paradigm. Annu. Rev. Astron. Astrophys. 55, 343–387 (2017).

    ADS  Google Scholar 

  448. Klypin, A., Kravtsov, A. V., Valenzuela, O. & Prada, F. Where are the missing galactic satellites? Astrophys. J. 522, 82–92 (1999).

    ADS  Google Scholar 

  449. Zavala, J. et al. The velocity function in the local environment from ΛCDM and ΛWDM constrained simulations. Astrophys. J. 700, 1779–1793 (2009).

    ADS  Google Scholar 

  450. Papastergis, E., Martin, A. M., Giovanelli, R. & Haynes, M. P. The velocity width function of galaxies from the 40% ALFALFA survey: shedding light on the cold dark matter overabundance problem. Astrophys. J. 739, 38 (2011).

    ADS  Google Scholar 

  451. Klypin, A., Karachentsev, I., Makarov, D. & Nasonova, O. Abundance of field galaxies. Mon. Not. R. Astron. Soc. 454, 1798–1810 (2015).

    ADS  Google Scholar 

  452. de Blok, W. J. G. & McGaugh, S. S. The dark and visible matter content of low surface brightness disc galaxies. Mon. Not. R. Astron. Soc. 290, 533–552 (1997).

    ADS  Google Scholar 

  453. Walker, M. G. & Peñarrubia, J. A method for measuring (slopes of) the mass profiles of dwarf spheroidal galaxies. Astrophys. J. 742, 20 (2011).

    ADS  Google Scholar 

  454. Boylan-Kolchin, M., Bullock, J. S. & Kaplinghat, M. Too big to fail? The puzzling darkness of massive Milky Way subhaloes. Mon. Not. R. Astron. Soc. 415, L40–L44 (2011).

    ADS  Google Scholar 

  455. Papastergis, E., Giovanelli, R., Haynes, M. P. & Shankar, F. Is there a “too big to fail” problem in the field? Astron. Astrophys. 574, A113 (2015).

    ADS  Google Scholar 

  456. Oman, K. A. et al. The unexpected diversity of dwarf galaxy rotation curves. Mon. Not. R. Astron. Soc. 452, 3650–3665 (2015).

    ADS  Google Scholar 

  457. Navarro, J. F., Eke, V. R. & Frenk, C. S. The cores of dwarf galaxy haloes. Mon. Not. R. Astron. Soc. 283, L72–L78 (1996).

    ADS  Google Scholar 

  458. Governato, F. et al. Cuspy no more: how outflows affect the central dark matter and baryon distribution in Λ cold dark matter galaxies. Mon. Not. R. Astron. Soc. 422, 1231–1240 (2012).

    ADS  Google Scholar 

  459. Oñorbe, J. et al. Forged in FIRE: cusps, cores and baryons in low-mass dwarf galaxies. Mon. Not. R. Astron. Soc. 454, 2092–2106 (2015).

    ADS  Google Scholar 

  460. Chan, T. K. et al. The impact of baryonic physics on the structure of dark matter haloes: the view from the FIRE cosmological simulations. Mon. Not. R. Astron. Soc. 454, 2981–3001 (2015).

    ADS  Google Scholar 

  461. Read, J. I., Agertz, O. & Collins, M. L. M. Dark matter cores all the way down. Mon. Not. R. Astron. Soc. 459, 2573–2590 (2016).

    ADS  Google Scholar 

Download references

Acknowledgements

The authors thank D. Barnes, M. Boylan-Kolchin, L. Hernquist, R. Kannan, H. Li, S. O’Neil, R. Pakmor, C. Pfrommer, L. Sales, A. Smith, V. Springel and R. Weinberger for useful comments. The authors also thank the reviewers for helpful feedback. M.V. acknowledges support through a Massachusetts Institute of Technology (MIT) RSC award, a Kavli Research Investment Fund, NASA ATP grant NNX17AG29G and National Science Foundation (NSF) grants AST-1814053 and AST-1814259. F.M. acknowledges support through the programme ‘Rita Levi Montalcini’ of the Italian Ministry of Education, University and Research.

Author information

Authors and Affiliations

Authors

Contributions

The authors contributed equally to all aspects of the article.

Corresponding author

Correspondence to Mark Vogelsberger.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Peer review information

Nature Reviews Physics thanks Jeremiah Ostriker, Matthieu Schaller and Naoki Yoshida for their contribution to the peer review of this work.

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Glossary

Friedmann–Lemaître–Robertson–Walker space-time

A metric that is an exact solution of Einstein’s field equations of general relativity describing a homogeneous, isotropic, expanding universe.

Comoving coordinates

Spatial coordinates within an isotropic and uniformly expanding universe, where the overall expansion is divided out.

Method of characteristics

A technique for solving partial differential equations based on finding curves along which the original partial differential equation becomes an ordinary differential equation.

Octree

A tree data structure in which each internal node has exactly eight children. Octrees are often used to partition a 3D space by recursively subdividing it into eight octants.

Virial mass

The virial mass is the mass of a gravitationally bound astrophysical system within a spherical region, bounded by the so-called virial radius, where the system obeys the virial theorem.

Riemann problem

A specific partial differential equation initial value problem composed of a conservation equation together with piecewise constant initial data, which has a single discontinuity in the domain of interest.

Voronoi tessellation

A subdivision of space into convex cells.

Jeans mass

Threshold mass above which a self-gravitating system becomes unstable and begins to collapse.

r-process

The abbreviation of ‘rapid neutron-capture nuclear process’, whereby a nucleus rapidly increases its atomic number by repeatedly capturing neutrons.

Biermann battery

A process by which a weak seed magnetic field can be generated from zero initial conditions.

Galactic dynamo

A theory describing how a conducting and rotating fluid can build and sustain a magnetic field over galactic scales.

Eddington tensor

A tensor relating the radiation pressure to radiative energy for radiative transfer calculations.

Sunyaev–Zeldovich scaling relations

Scaling relations connecting galaxy cluster properties, such as mass and luminosity, to the Sunyaev–Zeldovich Compton parameter.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Vogelsberger, M., Marinacci, F., Torrey, P. et al. Cosmological simulations of galaxy formation. Nat Rev Phys 2, 42–66 (2020). https://doi.org/10.1038/s42254-019-0127-2

Download citation

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s42254-019-0127-2

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing