Skip to main content
Log in

Closed-Form Expressions of Plane-Wave Reflection and Transmission Coefficients at a Planar Interface of Porous Media with a Normal Incident Fast P-Wave

  • Published:
Pure and Applied Geophysics Aims and scope Submit manuscript

Abstract

A porous medium is composed of a rock skeleton and pore fluids, and seismic wave propagation in it will produce complex and diverse variations influenced by pores and fluids filling. It is very important to carry out the study of closed-form expressions of the plane-wave reflection and transmission coefficients at a planar interface between porous media for analyzing the properties of pores and its fluids and eventually revealing underground oil-bearing reservoirs. In this paper, based on the relationships among seismic wave functions, displacements and stresses in porous media, an exact equation of plane-wave reflection and transmission coefficients with a normal incident fast P-wave is first derived. Considering the characteristics of the parameters in a coefficient matrix of an exact equation, the closed-form expressions with clear geophysical meaning are further derived, which include three parts, the rock skeleton term, the fluid–solid coupling term and the pore fluid term. Through the establishment of two porous media models, the influence of each term in the approximate expression on the reflection characteristics of a fast P-wave is analyzed. Different approximate expressions of the reflection coefficient of a fast P-wave can be selected for oil and gas prediction of different reservoirs, which lays a foundation for the identification of gas, oil and brine.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Beresnev, I. A. (2016). Does Biot’s theory have predictive power? Pure and Applied Geophysics,173, 2671–2686.

    Article  Google Scholar 

  • Biot, M. A. (1941). General theory of three-dimensional consolidation. Journal of Applied Physics,12(2), 155–164.

    Article  Google Scholar 

  • Biot, M. A. (1956). Theory of propagation of elastic waves in a fluid-saturated porous solid. I. Low-frequency range. Acoustical Society of America Journal,28(2), 168–178.

    Article  Google Scholar 

  • Biot, M. A. (1957). The elastic coefficients of the theory of consolidation. The Journal of Applied Mechanics,15(2), 594–601.

    Google Scholar 

  • Biot, M. A. (1962). Mechanics of deformation and acoustic propagation in porous media. Journal of Applied Physics,33(4), 1482–1498.

    Article  Google Scholar 

  • Dai, Z. J., Kuang, Z. B., & Zhao, S. X. (2006). Reflection and transmission of elastic waves from the interface of a fluid-saturated porous solid and a double porosity solid. Transport in Porous Media,65, 237–264.

    Article  Google Scholar 

  • Deresiewicz, H., & Skalak, R. (1963). On uniqueness in dynamic poroelasticity. Bulletin of the Seismological Society of America,53(4), 793–799.

    Google Scholar 

  • Gassmann, F. (1951). Über mechanische Empfänger von Seismographen und Schwingungsmessern. Archiv für Meteorologie, Geophysik und Bioklimatologie, Serie A,3(5), 408–422.

    Article  Google Scholar 

  • Gurevich, B., Ciz, R., & Denneman, A. I. M. (2004). Simple expressions for normal incidence reflection coefficients from an interface between fluid-saturated porous materials. Geophysics,69(6), 1372–1377.

    Article  Google Scholar 

  • Kumar, M., & Saini, R. (2016). Reflection and refraction of waves at the boundary of a non-viscous solid saturated with single fluid and a porous solid saturated with two immiscible fluids. Latin American Journal of Solids and Structures,13(7), 1299–1324.

    Article  Google Scholar 

  • Kumar, M., & Sharma, M. D. (2013). Reflection and transmission of attenuated waves at the boundary between two dissimilar poroelastic solids. Geophysical Prospecting,61(5), 1035–1055.

    Article  Google Scholar 

  • Kumari, N. (2014). Reflection and transmission of longitudinal wave at micropolar viscoelastic solid/fluid saturated incompressible porous solid interface. Journal of Solid Mechanics,6(3), 240–254.

    Google Scholar 

  • Kumari, M., Barak, M. S., & Kumar, M. (2017). Seismic reflection and transmission coefficients of a single layer sandwiched between two dissimilar poroelastic solids. Petroleum Science,14(4), 676–693.

    Article  Google Scholar 

  • Liu, X., & Greenhalgh, S. (2014). Reflection and transmission coefficients for an incident plane shear wave at an interface separating two dissimilar poroelastic solids. Pure and Applied Geophysics,171, 2111–2127.

    Article  Google Scholar 

  • Lo, W. C., & Sposito, G. (2005). Wave propagation through elastic porous media containing two immiscible fluids. Water Resources Research,41(2), 199–207.

    Article  Google Scholar 

  • Lovera, O. M. (1987). Boundary conditions for a fluid-saturated porous solid. Geophysics,52(2), 174–178.

    Article  Google Scholar 

  • Mu, Y. N. (1996). Reservoir geophysics. Beijing: Petroleum Industry Press.

    Google Scholar 

  • Pride, S. R., & Berryman, J. G. (2003). Linear dynamics of double-porosity dual-permeability materials I. Governing equations and acoustic attenuation. Physical Review E,68(3), 036603.

    Article  Google Scholar 

  • Rubino, J. G., & Holliger, K. (2012). Seismic attenuation and velocity dispersion in heterogeneous partially saturated porous rocks. Geophysical Journal International,188, 1088–1102.

    Article  Google Scholar 

  • Russell, B. H., Gray, D., & Hampson, D. P. (2011). Linearized AVO and poroelasticity. Geophysics,76(3), C19–C29.

    Article  Google Scholar 

  • Sharma, M. D. (2008). Wave propagation across the boundary between two dissimilar poroelastic solids. Journal of Sound and Vibration,314(3), 657–671.

    Article  Google Scholar 

  • Sharma, M. D., & Kumar, M. (2011). Reflection of attenuated waves at the surface of a porous solid saturated with two immiscible viscous fluids. Geophysical Journal International,184(1), 371–384.

    Article  Google Scholar 

  • Silin, D. B., & Goloshubin, G. (2010). An asymptotic model of seismic reflection from a permeable layer. Transport in Porous Media,83(1), 233–256.

    Article  Google Scholar 

  • Tomar, S. K., & Arora, A. (2006). Reflection and transmission of elastic waves at an elastic/porous solid saturated by two immiscible fluids. International Journal of Solids and Structure,43, 1991–2013.

    Article  Google Scholar 

  • Tuncay, K., & Corapcioglu, M. Y. (1996). Body waves in poroelastic media saturated by two immiscible fluids. Journal of Geophysical Research,101(B11), 25149–25159.

    Article  Google Scholar 

  • Tuncay, K., & Corapcioglu, M. Y. (1997). Wave propagation in poroelastic media saturated by two fluids. Journal of Applied Mechanics,64(2), 313–320.

    Article  Google Scholar 

  • Vashisth, A. K., Sharma, M. D., & Gogna, M. L. (1991). Reflection and transmission of elastic waves at a loosely bonded interface between an elastic solid and liquid-saturated porous solid. Geophysical Journal International,105(3), 601–617.

    Article  Google Scholar 

  • Walton, K. (1987). The effective elastic moduli of a random pack of spheres. Journal of the Mechanics and Physics of Solids,35, 213–226.

    Article  Google Scholar 

  • Wang, H., Fehler, M. C., & Miller, D. (2017). Reliability of velocity measurements made by monopole acoustic logging-while-drilling tools in fast formations. Geophysics,82(4), D225–D233.

    Article  Google Scholar 

  • Yin, X. Y., Zong, Z. Y., & Wu, G. C. (2015). Research on seismic fluid identification driven by rock physics. Science China: Earth Sciences,58, 159–171.

    Article  Google Scholar 

  • Zhao, L. X., Han, D. H., Yao, Q. L., et al. (2015). Seismic reflection dispersion due to wave-induced fluid flow in heterogeneous reservoir rocks. Geophysics,80(3), D221–D235.

    Article  Google Scholar 

  • Zong, Z. Y., Wang, Y. R., Li, K., & Yin, X. Y. (2018). Broadband seismic inversion for low-frequency component of the model parameter. IEEE Transactions on Geoscience and Remote Sensing,99, 1–8.

    Article  Google Scholar 

  • Zong, Z. Y., & Yin, X. Y. (2017). Model parameterization and P-wave AVA direct inversion for Young’s impedance. Pure and Applied Geophysics,174(5), 1965–1981.

    Article  Google Scholar 

Download references

Acknowledgements

This study was financially supported by the Postdoctoral Science Foundation of China (grant no. 2019M663452), the National Science Foundation of China (grant nos. U1562111, 41774142), the National Key S&T Special Projects of China (grant no. 2011ZX05025-003), and the Excellent Innovation Team Project of the CDUT (grant no. KYTD201403). The authors are also grateful to the anonymous reviewers for their constructive comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhaoyun Zong.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Appendix

Appendix

The two-dimensional system of linear algebraic equations (2D SLAE) relating to the reflection coefficients of \( r_{1} \) and \( r_{2} \) are obtained in Eq. 32. Solving this equation, the reflection coefficients can be derived as

$$ \begin{aligned} N & = \left( {e_{21} d_{12} - e_{12} d_{21} } \right) + \left( {e_{11} d_{12} - e_{12} d_{11} } \right) \\ & \quad + \frac{{\gamma_{12} }}{{\gamma_{22} }}\left[ {\left( {e_{21} d_{22} - e_{22} d_{21} } \right) + \left( {e_{11} d_{22} - e_{22} d_{11} } \right)} \right], \\ \end{aligned} $$
(44)
$$ r_{1} = \frac{1}{N}\left\{ {\begin{array}{*{20}l} {\left( {e_{21} d_{12} - e_{12} d_{21} } \right) - \left( {e_{11} d_{12} - e_{12} d_{11} } \right) + } \hfill \\ {\quad \frac{{\gamma_{12} }}{{\gamma_{22} }}\left[ {\left( {e_{21} d_{22} - e_{22} d_{21} } \right) - \left( {e_{11} d_{22} - e_{22} d_{11} } \right)} \right]} \hfill \\ \end{array} } \right\}, $$
(45)
$$ r_{2} = \frac{2}{N}\left\{ {e_{11} d_{21} - e_{21} d_{11} } \right\}. $$
(46)

Taking Eqs. 13, 14 and 33 into 32, combining the definitions of P-wave impedances in Eqs. 34a and 34b, and considering Eq. 27, the following approximate equations can be obtained:

$$ e_{21} d_{12} - e_{12} d_{21} \approx \gamma_{12} Ip_{{s_{21} }} Ip_{{f_{12} }} + \left( {\alpha_{1} Ip_{{s_{21} }} Ip_{{f_{12} }} - \alpha_{2} Ip_{{s_{12} }} Ip_{{f_{21} }} } \right) + \alpha_{2} \left( {\alpha_{2} - \alpha_{1} } \right)\left( {\alpha_{1} { + }\gamma_{12} } \right)Ip_{{f_{12} }} Ip_{{f_{21} }} , $$
(47)
$$ e_{11} d_{12} - e_{12} d_{11} \approx \gamma_{12} Ip_{{s_{11} }} Ip_{{f_{12} }} , $$
(48)
$$ e_{21} d_{22} - e_{22} d_{21} \approx \gamma_{22} Ip_{{s_{21} }} Ip_{{f_{22} }} , $$
(49)
$$ e_{11} d_{22} - e_{22} d_{11} \approx \gamma_{22} Ip_{{s_{11} }} Ip_{{f_{22} }} \quad + \left( {\alpha_{2} Ip_{{s_{11} }} Ip_{{f_{22} }} - \alpha_{1} Ip_{{s_{22} }} Ip_{{f_{11} }} } \right) + \alpha_{1} \left( {\alpha_{1} - \alpha_{2} } \right)\left( {\alpha_{2} { + }\gamma_{22} } \right)Ip_{{f_{11} }} Ip_{{f_{22} }} , $$
(50)
$$ e_{11} d_{21} - e_{21} d_{11} \approx \quad - \left\{ {\left[ {\alpha_{1} Ip_{{f_{11} }} Ip_{{s_{21} }} - \alpha_{2} Ip_{{f_{21} }} Ip_{{s_{11} }} } \right] + \alpha_{1} \alpha_{2} \left( {\alpha_{2} - \alpha_{1} } \right)Ip_{{f_{11} }} Ip_{{f_{21} }} } \right\}. $$
(51)

Bringing Eqs. 4751 into Eqs. 4446, the closed-form expressions with explicitly geophysical meaning can finally be derived as

$$ r_{1} \approx \frac{{\left( {Ip_{{s_{21} }} - Ip_{{s_{11} }} } \right) + \left( {X_{2} - X_{1} } \right){ + }\left( {Y_{2} - Y_{1} } \right)}}{{\left( {Ip_{{s_{21} }} + Ip_{{s_{11} }} } \right) + \left( {X_{2} { + }X_{1} } \right) + \left( {Y_{2} + Y_{1} } \right)}}, $$
(52)
$$ r_{2} \approx - \frac{1}{{\gamma_{12} }} \cdot \frac{{\left( {Z_{2} - Z_{1} } \right) + Z_{3} }}{{\left( {Ip_{{s_{21} }} + Ip_{{s_{11} }} } \right) + \left( {X_{2} { + }X_{1} } \right) + \left( {Y_{2} + Y_{1} } \right)}}. $$
(53)

The parameters of \( X_{k} ,Y_{k} ,k = 1,2 \) and \( Z_{k} ,k = 1,2,3 \) are defined as

$$ X_{1} = \frac{{\alpha_{2} \cdot Ip_{{f_{22} }} }}{{\gamma_{22} \cdot \left( {Ip_{{f_{12} }} + Ip_{{f_{22} }} } \right)}} \cdot Ip_{{s_{11} }} - \frac{{\alpha_{1} \cdot Ip_{{f_{11} }} }}{{\gamma_{22} \cdot \left( {Ip_{{f_{12} }} + Ip_{{f_{22} }} } \right)}} \cdot Ip_{{s_{22} }} , $$
(54)
$$ X_{2} = \frac{{\alpha_{1} \cdot Ip_{{f_{12} }} }}{{\gamma_{12} \cdot \left( {Ip_{{f_{12} }} + Ip_{{f_{22} }} } \right)}} \cdot Ip_{{s_{21} }} - \frac{{\alpha_{2} \cdot Ip_{{f_{21} }} }}{{\gamma_{12} \cdot \left( {Ip_{{f_{12} }} + Ip_{{f_{22} }} } \right)}} \cdot Ip_{{s_{12} }} . $$
(55)
$$ Y_{1} = \alpha_{1} \cdot \left( {\alpha_{1} - \alpha_{2} } \right) \cdot \left( {1 + \frac{{\alpha_{2} }}{{\gamma_{22} }}} \right) \cdot \frac{{Ip_{{f_{22} }} }}{{\left( {Ip_{{f_{12} }} + Ip_{{f_{22} }} } \right)}} \cdot Ip_{{f_{11} }} , $$
(56)
$$ Y_{2} = \alpha_{2} \cdot \left( {\alpha_{2} - \alpha_{1} } \right) \cdot \left( {1 + \frac{{\alpha_{1} }}{{\gamma_{12} }}} \right) \cdot \frac{{Ip_{{f_{12} }} }}{{\left( {Ip_{{f_{12} }} + Ip_{{f_{22} }} } \right)}} \cdot Ip_{{f_{21} }} . $$
(57)
$$ Z_{1} = \frac{{\alpha_{2} \cdot Ip_{{f_{21} }} }}{{Ip_{{f_{12} }} + Ip_{{f_{22} }} }} \cdot Ip_{{s_{11} }} , $$
(58)
$$ Z_{2} = \frac{{\alpha_{1} \cdot Ip_{{f_{11} }} }}{{Ip_{{f_{12} }} + Ip_{{f_{22} }} }} \cdot Ip_{{s_{21} }} , $$
(59)
$$ Z_{3} = \alpha_{1} \cdot \alpha_{2} \cdot \left( {\alpha_{2} - \alpha_{1} } \right) \cdot \frac{{Ip_{{f_{11} }} \cdot Ip_{{f_{21} }} }}{{Ip_{{f_{12} }} + Ip_{{f_{22} }} }}. $$
(60)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Zhou, D., Yin, X. & Zong, Z. Closed-Form Expressions of Plane-Wave Reflection and Transmission Coefficients at a Planar Interface of Porous Media with a Normal Incident Fast P-Wave. Pure Appl. Geophys. 177, 2605–2617 (2020). https://doi.org/10.1007/s00024-019-02383-1

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00024-019-02383-1

Keywords

Navigation