Skip to main content
Log in

Removal of Various Textile Dyes Using LaMn(Fe)O3 and LaFeMn0.5O3 Nanoperovskites; RSM Optimization, Isotherms and Kinetics Studies

  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Nano-perovskites of La with Mn or Fe cations were prepared by the Pechini method. The products were characterized by FT-IR, TGA/DTA, XRD, FESEM, BET, and AFM analysis. The degradation efficiency of an acidic solution of anionic, cationic and neutral azo or anthraquinone dyes was investigated in the presence of LaMn(Fe)O3 and LaFeMn0.5O3 nanoperovskites without any external reagents under dark. The results reveal that degradation efficiency follows the order of LaMnO3.125 > LaFeMn0.5O3 > LaFeO3. Compared with pure LaFeO3, the LaFeMn0.5O3 sample exhibits an enhanced adsorption capability and consequently catalytic performance. The key parameters such as catalyst type, dye initial concentration and reaction time on the degradation efficiency were optimized using response surface methodology (RSM) based on historical data design. The R2, F-value, and p-value of the fitted quadratic model were obtained 0.9822, 315.51, and smaller than 0.0001, respectively; showing the significance and adequacy of the model. The Langmuir and Freundlich isotherms were utilized to fit the experimental data. The kinetic of degradation have been investigated with the use of pseudo-first-order and -second-order models. The isotherm and kinetic results reveal that each type of dye adsorb differently and need to study separately. Finally, the proposed catalysts outperformed similar catalysts in the degradation of organic dyes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  1. C. O’Neill, F.R. Hawkes, D.L. Hawkes, N.D. Lourenço, H.M. Pinheiro, W. Delée, J. Chem. Technol. Biotechnol. 74, 1009 (1999)

    Article  Google Scholar 

  2. H. Park, W. Choi, J. Photochem. Photobiol. A 159, 241 (2003)

    Article  CAS  Google Scholar 

  3. H. Chen, J. Motuzas, W. Martens, J.C. Diniz da Costa, Appl. Catal. B 221, 691 (2018)

    Article  CAS  Google Scholar 

  4. J.M. Wu, W. Wen, Environ. Sci. Technol. 44, 9123 (2010)

    Article  CAS  Google Scholar 

  5. M.N. Khan, O. Bashir, T.A. Khan, S.A. Al-Thabaiti, Z. Khan, Int. J. Chem. Kinet. 49, 438 (2017)

    Article  CAS  Google Scholar 

  6. M. Ghiasi, A. Malekzadeh, Sep. Purif. Technol. 134, 12 (2014)

    Article  CAS  Google Scholar 

  7. P.A. Deshpande, G. Madras, Chem. Eng. J. 158, 571 (2010)

    Article  CAS  Google Scholar 

  8. J.L.G. Fierro, J.M.D. Tascón, L.G. Tejuca, J. Catal. 93, 83 (1985)

    Article  CAS  Google Scholar 

  9. B. Kucharczyk, K. Adamska, W. Tylus, W. Miśta, B. Szczygieł, J. Winiarski, Catal. Lett. 149, 1919 (2019)

    Article  CAS  Google Scholar 

  10. R. Maity, M.S. Sheikh, A. Dutta, T.P. Sinha, J. Electron. Mater. 48, 4856 (2019)

    Article  CAS  Google Scholar 

  11. M. Dhiman, S. Singhal, J Rare Earth. (2018). https://doi.org/10.1016/j.jre.2018.12.015

    Article  Google Scholar 

  12. Z.X. Wei, Y. Wang, J.P. Liu, C.M. Xiao, W.W. Zeng, Mater. Chem. Phys. 136, 755 (2012)

    Article  CAS  Google Scholar 

  13. Q. Peng, B. Shan, Y. Wen, R. Chen, Int. J. Hydrog. Energy 40, 15423 (2015)

    Article  CAS  Google Scholar 

  14. K.S. Chan, J. Ma, S. Jaenicke, G.K. Chuah, J.Y. Lee, Appl. Catal. A 107, 201 (1994)

    Article  CAS  Google Scholar 

  15. J. Faye, E. Guélou, J. Barrault, J.M. Tatibouët, S. Valange, Top. Catal. 52, 1211 (2009)

    Article  CAS  Google Scholar 

  16. E.J. Baran, Catal. Today 8, 133 (1990)

    Article  CAS  Google Scholar 

  17. A. Gholizadeh, H. Yousefi, A. Malekzadeh, F. Pourarian, Ceram. Int. 42, 12055 (2016)

    Article  CAS  Google Scholar 

  18. S. Lacombe, H. Zanthoff, C. Mirodatos, J. Catal. 155, 106 (1995)

    Article  CAS  Google Scholar 

  19. L. Kebin, L. Xijun, Z. Kaigui, Z. Jingsheng, Z. Yuheng, J. Appl. Phys. 81, 6943 (1997)

    Article  CAS  Google Scholar 

  20. M. Sun, Y. Jiang, F. Li, M. Xia, B. Xue, D. Liu, Mater. Res. Bull. 46, 801 (2011)

    Article  CAS  Google Scholar 

  21. R. Hammami, S.B. Aïssa, H. Batis, Appl. Catal. A 353, 145 (2009)

    Article  CAS  Google Scholar 

  22. A. Wold, R.J. Arnott, J. Phys. Chem. Solids 9, 176 (1959)

    Article  CAS  Google Scholar 

  23. R. Hammami, N.H. Batis, H. Batis, C. Minot, Solid State Sci. 11, 885 (2009)

    Article  CAS  Google Scholar 

  24. M. Ghiasi, A. Malekzadeh, Acta. Metall. Sin. 27, 635 (2014)

    Article  CAS  Google Scholar 

  25. A. Gholizadeh, J. Magn. Magn. Mater. 452, 389 (2018)

    Article  CAS  Google Scholar 

  26. M. Khazaei, A. Malekzadeh, F. Amini, Y. Mortazavi, A. Khodadadi, Cryst. Res. Technol. 45, 1064 (2010)

    Article  CAS  Google Scholar 

  27. A. Gholizadeh, J. Mater. Res. Technol. 8, 457 (2019)

    Article  CAS  Google Scholar 

  28. A. Gholizadeh, J. Am. Ceram. Soc. 100, 859 (2017)

    Article  CAS  Google Scholar 

  29. J. Yu, G. Wang, B. Cheng, M. Zhou, Appl. Catal. B 69, 171 (2007)

    Article  CAS  Google Scholar 

  30. B. Neppolian, H.C. Choi, S. Sakthivel, B. Arabindoo, V. Murugesan, J. Hazard. Mater. 89, 303 (2002)

    Article  CAS  Google Scholar 

  31. G.A. Epling, C. Lin, Chemosphere 46, 561 (2002)

    Article  CAS  Google Scholar 

  32. A.R. Khataee, M.B. Kasiri, J. Mol. Catal. A 328, 8 (2010)

    Article  CAS  Google Scholar 

  33. M. Zhou, J. Yu, B. Cheng, J. Hazard. Mater. 137, 1838 (2006)

    Article  CAS  Google Scholar 

  34. A.F. Alkaim, A.M. Aljeboree, N.A. Alrazaq, S.J. Baqir, F.H. Hussein, A.J. Lilo, Asian. J. Chem. 26, 8445 (2014)

    Article  Google Scholar 

  35. I. Langmuir, J. Am. Chem. Soc. 40, 1361 (1918)

    Article  CAS  Google Scholar 

  36. B.H. Hameed, D.K. Mahmoud, A.L. Ahmad, J. Hazard. Mater. 158, 65 (2008)

    Article  CAS  Google Scholar 

  37. L.D. Asnin, A.A. Fedorov, Y.S. Chekryshkin, Russ. Chem. Bull. 49, 178 (2006)

    Article  Google Scholar 

  38. Y.S. Ho, G. McKay, Water. Res. 33, 578 (1999)

    Article  CAS  Google Scholar 

  39. Y.S. Ho, G. McKay, Process. Biochem. 34, 451 (1999)

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Azim Malekzadeh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 552 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Ghiasi, E., Malekzadeh, A. Removal of Various Textile Dyes Using LaMn(Fe)O3 and LaFeMn0.5O3 Nanoperovskites; RSM Optimization, Isotherms and Kinetics Studies. J Inorg Organomet Polym 30, 2789–2804 (2020). https://doi.org/10.1007/s10904-019-01438-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01438-z

Keywords

Navigation