Skip to main content
Log in

Gas hydrate formation by allyl alcohol and CH4: Spectroscopic and thermodynamic analysis

  • Separation Technology, Thermodynamics
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

We discovered a new structure II (sII) hydrate forming agent, allyl alcohol (AA), in the presence of methane (CH4) for the first time, and characterized the crystal structure, guest distribution, and phase equilibria of the (AA+CH4) hydrate. Using solid-state 13C NMR and Raman spectroscopy, the crystal structure of the (AA+CH4) hydrate was confirmed to be a sII hydrate, and the CH4 molecule was found to be encapsulated in both the large and small cages of the sII hydrate. In addition, AA was found to be included in the large cages of the sII hydrate in the Gauche-Gauche form based on the measured- and calculated-NMR spectra. Notably, we investigated the free OH signal of AA in the Raman spectra to determine whether hydrogen bonding occurred between host and guest molecules; however, we could not determine whether the existence of the free OH signal was consistent with this host-guest interaction. To clearly identify the crystal structure and possible host-guest interactions, a high-resolution powder X-ray diffraction (HRPD) pattern of our (AA+CH4) hydrate sample was analyzed using Rietveld analysis with the direct space method. The crystal structure of the (AA+CH4) hydrate was assigned as the cubic Fd3m structure with a lattice constant of 17.1455 Å. In particular, the shortest distance between the AA molecule in the hydrate cages and an oxygen atom in the host water was estimated to be 2.55 Å; thus, we concluded that the hydroxyl group of the AA molecule was hydrogen-bonded to the host water framework. Finally, we measured the phase equilibrium conditions of the binary (AA+CH4) hydrate and found that the equilibrium pressure conditions of the binary (AA+CH4) hydrate were slightly higher than those of the pure CH4 hydrate.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. E. D. Sloan and C. A. Koh, Clathrate Hydrates of Natural Gases, 3rd Ed. CRC Press Boca Raton (2008).

    Google Scholar 

  2. E. D. Sloan, Nature, 426, 353 (2003).

    Article  CAS  PubMed  Google Scholar 

  3. M. Cha, K. Shin, J. Kim, D. Chang, Y. Seo, H. Lee and S. P. Kang, Chem. Eng. Sci., 99, 184 (2013).

    Article  CAS  Google Scholar 

  4. H. Mimachi, S. Takeya, A. Yoneyama, K. Hyodo, T. Takeda, Y. Gotoh and T. Murayama, Chem. Eng. Sci., 118, 208 (2014).

    Article  CAS  Google Scholar 

  5. H. P. Veluswamy, A. Kumar, Y. Seo, J. D. Lee and P. Linga, Appl. Energy, 216, 262 (2018).

    Article  CAS  Google Scholar 

  6. Z. M. Aman, E. P. Brown, E. D. Sloan, A. K. Sum and C. A. Koh, Phys. Chem. Chem. Phys., 13(44), 19796 (2011).

    Article  CAS  PubMed  Google Scholar 

  7. Y.-T. Seo, S.-P. Kang and H. Lee, Fluid Phase Equilib., 189, 99 (2001).

    Article  CAS  Google Scholar 

  8. Y. Seo, S. P. Kang, J. Lee, J. Seol and H. Lee, J. Chem. Eng. Data, 56(5), 2316 (2011).

    Article  CAS  Google Scholar 

  9. Y Jin, M. Kida and J. Nagao, J. Phys. Chem. C, 119(17), 9069 (2015).

    Article  CAS  Google Scholar 

  10. S. Muromachi, T. Nakajima, R. Ohmura and Y. H. Mori, Fluid Phase Equilib., 305(2), 145 (2011).

    Article  CAS  Google Scholar 

  11. K. Shin, M. Cha, W. Lee, H. Kim, Y. Jung, J. Dho, J. Kim and H. Lee, J. Am. Chem. Soc., 133(50), 20399 (2011).

    Article  CAS  PubMed  Google Scholar 

  12. L. J. Florusse, C. J. Peters, J. Schoonman, K. C. Hester, C. A. Koh, S. F. Dec, K. N. Marsh and E. D. Sloan, Science, 306(5695), 469 (2004).

    Article  CAS  PubMed  Google Scholar 

  13. K. A. Lokshin, Y. S. Zhao, D. W. He, W. Mao, H. K. Mao, R. J. Hemley, M. V. Lobanov and M. Greenblatt, Abstr. Pap. Am. Chem. S, 229, U589 (2005).

    Google Scholar 

  14. W. X. Wang, C. L. Bray, D. J. Adams and A. I. Cooper, J. Am. Chem. Soc., 130(35), 11608 (2008).

    Article  CAS  PubMed  Google Scholar 

  15. T. Daitoku and Y. Utaka, Appl. Energy, 87(8), 2682 (2010).

    Article  CAS  Google Scholar 

  16. N. J. Kim, J. H. Lee, Y. S. Cho and W. Chun, Energy, 35(6), 2717 (2010).

    Article  CAS  Google Scholar 

  17. B. S. Kiran, K. Sowjanya, P. S. R. Prasad and J. H. Yoon, Oil Gas Sci. Technol., 74, 12 (2019).

    Article  Google Scholar 

  18. Z. R. Chong, T. B. He, P. Babu, J. N. Zheng and P. Linga, Desalination, 463, 69 (2019).

    Article  CAS  Google Scholar 

  19. S. J. Obrey, R. P. Currier, F. F. Jebrail, L. A. Le, R. J. Martinez, M. A. Sedillo, D. L. Yang, S. Tam, G. Deppe, A. Lee and D. F. Spencer, Abstr. Pap. Am. Chem. S, 231, INOR237 (2006).

    Google Scholar 

  20. J. Park, Y. T. Seo, J. W. Lee and H. Lee, Catal. Today, 115(1–4), 279 (2006).

    Article  CAS  Google Scholar 

  21. Y. Park, D. Y. Kim, J. W. Lee, D. G. Huh, K. P. Park, J. Lee and H. Lee, Proc. Natl. Acad. Sci. USA, 103(34), 12690 (2006).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. H. J. Lee J. D. Lee and Y. D. Kim, Kor. J. Mater. Res., 18(12), 650 (2008).

    Article  CAS  Google Scholar 

  23. Y. J. Yang, D. Shin, S. Choi, Y. Woo, J. W. Lee, D. Kim, H. Y. Shin, M. Cha and J. H. Yoon, Environ. Sci. Technol., 51(6), 3550 (2017).

    Article  CAS  PubMed  Google Scholar 

  24. D. Y. Koh, H. Kang, D. O. Kim, J. Park, M. Cha and H. Lee, Chemsuschem., 5(8), 1443 (2012).

    Article  CAS  PubMed  Google Scholar 

  25. K. Shin, Y. Park, M. J. Cha, K. P. Park, D. G. Huh, J. Lee, S. J. Kim and H. Lee, Energy Fuel, 22(5), 3160 (2008).

    Article  CAS  Google Scholar 

  26. A. Farhadi and V. Mohebbi, Int. J. Hydrogen Energy, 42(31), 19967 (2017).

    Article  CAS  Google Scholar 

  27. Y. Youn, M. J. Cha, M. Kwon, J. Park, Y. Seo and H. Lee, Korean J. Chem. Eng., 33(5), 1712 (2016).

    Article  CAS  Google Scholar 

  28. S. D. Seo, S. Y. Hong, A. K. Sum, K. H. Lee, J. D. Lee and B. R. Lee, Chem. Eng. J., 370, 980 (2019).

    Article  CAS  Google Scholar 

  29. W. Choi, Y. Lee, J. Mok, S. Lee, J. D. Lee and Y. Seo, Chem. Eng. J., 358, 598 (2019).

    Article  CAS  Google Scholar 

  30. H. Lee, H. Ryu, J. H. Lim, J. O. Kim, J. D. Lee and S. Kim, Desalin Water Treat., 57(19), 9009 (2016).

    Article  CAS  Google Scholar 

  31. K. C. Kang, P. Linga, K. N. Park, S. J. Choi and J. D. Lee, Desalination, 353, 84 (2014).

    Article  CAS  Google Scholar 

  32. J. H. Cha and Y. Seol, Acs Sustain. Chem. Eng., 1(10), 1218 (2013).

    Article  CAS  Google Scholar 

  33. K. N. Park, S. Y. Hong, J. W. Lee, K. C. Kang, Y. C. Lee, M. G. Ha and J. D. Lee, Desalination, 274(1–3), 91 (2011).

    Article  CAS  Google Scholar 

  34. M. Cha, K. Shin, Y. Seo, J. Y. Shin and S. P. Kang, J. Phys. Chem. A, 117(51), 13988 (2013).

    Article  CAS  PubMed  Google Scholar 

  35. M. J. Cha, S. Baek, H. Lee and J. W. Lee, Rsc Adv., 4(50), 26176 (2014).

    Article  CAS  Google Scholar 

  36. M. J. Cha, S. Baek, J. Morris and J. W. Lee, Chem-Asian J., 9(1), 261 (2014).

    Article  CAS  PubMed  Google Scholar 

  37. M. J. Cha, A. Couzis and J. W. Lee, Langmuir, 29(19), 5793 (2013).

    Article  CAS  PubMed  Google Scholar 

  38. M. J. Cha, Y. Hu and A. K. Sum, Fluid Phase Equilib., 413, 2 (2016).

    Article  CAS  Google Scholar 

  39. M. J. Cha, H. Lee and J. W. Lee, J. Phys. Chem. C, 117(45), 23515 (2013).

    Article  CAS  Google Scholar 

  40. M. Cha, K. Shin and H. Lee, J. Phys. Chem. B, 113(31), 10562 (2009).

    Article  CAS  PubMed  Google Scholar 

  41. S. Alavi, K. Shin and J. A. Ripmeester, J. Chem. Eng. Data, 60(2), 389 (2015).

    Article  CAS  Google Scholar 

  42. K. Shin, K. A. Udachin, I. L. Moudrakovski, D. M. Leek, S. Alavi, C. I. Ratcliffe and J. A. Ripmeester, Proc. Natl. Acad. Sci. USA, 110(21), 8437 (2013).

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. J. W. Lee and S. P. Kang, J. Phys. Chem. B, 116(1), 332 (2012).

    Article  CAS  PubMed  Google Scholar 

  44. S. Alavi, S. Takeya, R. Ohmura, T. K. Woo and J. A. Ripmeester, J. Chem. Phys., 133(7), 074505 (2010).

    Article  PubMed  CAS  Google Scholar 

  45. M. Cha, K. Shin and H. Lee, Korean J. Chem. Eng., 34(9), 2514 (2017).

    Article  CAS  Google Scholar 

  46. R. Ohmura, S. Takeya, T. Uchida, I. Y. Ikeda, T. Ebinuma and H. Narita, Fluid Phase Equilib., 221(1–2), 151 (2004).

    Article  CAS  Google Scholar 

  47. S. Sinehbaghizadeh, J. Javanmardi and A. H. Mohammadi, J. Chem. Thermodyn., 125, 64 (2018).

    Article  CAS  Google Scholar 

  48. Y Youn, M. Cha and H. Lee, Chemphyschem., 16(13), 2876 (2015).

    Article  CAS  PubMed  Google Scholar 

  49. F. V. Zhurko, A. Y. Manakov and V. I. Kosyakov, Chem. Eng. Sci., 65(2), 900 (2010).

    Article  CAS  Google Scholar 

  50. K. Udachin, S. Alavi and J. A. Ripmeester, J. Chem. Phys., 134(12), 054702 (2011).

    Article  CAS  Google Scholar 

  51. M. Imai, Y. Oto, S. Nitta, S. Takeya and R. Ohmura J. Chem. Thermodyn., 47, 17 (2012).

    Article  CAS  Google Scholar 

  52. S. Imai, K. Miyake, R. Ohmura and Y. H. Mori, J. Chem. Eng. Data, 52(3), 1056 (2007).

    Article  CAS  Google Scholar 

  53. R. Ohmura, S. Takeya, T. Uchida and T. Ebinuma, Ind. Eng. Chem. Res., 43(16), 4964 (2004).

    Article  CAS  Google Scholar 

  54. S. Takeya, K. A. Udachin, I. L. Moudrakovski, R. Susilo and J. A. Ripmeester, J. Am. Chem. Soc., 132(2), 524 (2010).

    Article  CAS  PubMed  Google Scholar 

  55. J. Rodríguez-Carvajal, Phys. B: Condens. Matter, 192, 55 (1993).

    Article  Google Scholar 

  56. V. Favre-Nicolin and R. Černý, J. Appl. Crystallogr., 35, 734 (2002).

    Article  CAS  Google Scholar 

  57. Y. H. Ahn, B. Lee and K. Shin, Crystals, 8(8), 328 (2018).

    Article  CAS  Google Scholar 

  58. K. H. Park, D. Jeong, J. H. Yoon and M. Cha, Fluid Phase Equilib., 493, 43 (2019).

    Article  CAS  Google Scholar 

  59. K. Shin, Y. Park, J. H. Hong and H. Lee, Korean J. Chem. Eng., 24(5), 843 (2007).

    Article  CAS  Google Scholar 

  60. M. J. Frisch, G. W. Trucks, H. B. Schlegel, G. E. Scuseria, M. A. Robb, J. R. Cheeseman, J. A. Montgomery, Jr., T. Vreven, K. N. Kudin, J. C. Burant, J. M. Millam, S. S. Iyengar, J. Tomasi, V. Barone, B. Mennucci, M. Cossi, G. Scalmani, N. Rega, G. A. Petersson, H. Nakatsuji, M. Hada, M. Ehara, K. Toyota, R. Fukuda, J. Hasegawa, M. Ishida, T. Nakajima, Y. Honda, O. Kitao, H. Nakai, M. Klene, X. Li, J. E. Knox, H. P. Hratchian, J. B. Cross, V. Bakken, C. Adamo, J. Jaramillo, R. Gomperts, R. E. Stratmann, O. Yazyev, A. J. Austin, R. Cammi, C. Pomelli, J. W. Ochterski, P. Y. Ayala, K. Morokuma, G. A. Voth, P. Salvador, J. J. Dannenberg, V. G. Zakrzewski, S. Dapprich, A. D. Daniels, M. C. Strain, O. Farkas, D. K. Malick, A. D. Rabuck, K. Raghavachari, J. B. Foresman, J. V. Ortiz, Q. Cui, A. G. Baboul, S. Clifford, J. Cioslowski, B. B. Stefanov, G. Liu, A. Liashenko, P. Piskorz, I. Komaromi, R. L. Martin, D. J. Fox, T. Keith, M. A. Al-Laham, C. Y. Peng, A. Nanayakkara, M. Challacombe, P. M. W. Gill, B. Johnson, W. Chen, M. W. Wong, C. Gonzalez and J. A. Pople, Gaussian 03, Revision C.02 (Gaussian, Inc., Wallingford CT, 2004).

    Google Scholar 

  61. K. Shin, I. L. Moudrakovski, C. I. Ratcliffe and J. A. Ripmeester, Angew. Chem. Int. Ed., 56(22), 6171 (2017).

    Article  CAS  Google Scholar 

  62. Y. H. Ahn, Y. Youn, M. Cha and H. Lee, Rsc Adv., 7(20), 12359 (2017).

    Article  CAS  Google Scholar 

Download references

Acknowledgement

This study was supported by the National Research Foundation of Korea (NRF) grants (NRF-2017R1C1B5017036 and NRF-2019R1F1A1058167) funded by the Korea government (MSIT; Ministry of Science and ICT). NMR experiments are acquired at Bruker AVANCE II+ 400 MHz NMR system in KBSI Seoul Western Center. High resolution powder diffraction (HRPD) patterns are collected from the beamline (9B) at Pohang Accelerator Laboratory.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Minjun Cha.

Supporting Information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, K.H., Cha, M. Gas hydrate formation by allyl alcohol and CH4: Spectroscopic and thermodynamic analysis. Korean J. Chem. Eng. 37, 151–158 (2020). https://doi.org/10.1007/s11814-019-0429-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0429-1

Keywords

Navigation