Skip to main content

Advertisement

Log in

Decomposition of indoor VOC pollutants using non-thermal plasma with gas recycling

  • Environmental Engineering
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Volatile organic compounds in the indoor environment of small businesses (painting workshops, hair salons, nail shops, printing shops, laundries etc.) may result in adverse health effects for both workers and customers. Similarly, VOCs identified in these small businesses are included in the list of ozone precursors that harm the environment. We used a non-thermal plasma reactor with gas recycling to study the decomposition of dilute concentrations of VOCs in air. The non-thermal plasma reactor was a surface dielectric barrier discharge (surface DBD) type, and the target gases were methyl ethyl ketone, toluene and n-hexane at concentrations of 20, 50 and 100 ppmv. Highest decomposition efficiency (97%) was achieved by treating n-hexane at 20 ppmv. Gas recycling had an almost negligible effect during pollutant treatment at varying recycling rates (0-50%). Increasing the input energy resulted in higher decomposition efficiency, but had an inverse effect on the energy yield of the system. Concentrations of CO2 and ozone increased linearly with the increase of energy input in the system. Consumption of ozone for other applications, such as water treatment or coupling the DBD system with an appropriate catalyst, may address this concern.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. I. Odeh and T. Hussein, Int. J. Environ. Res. Public Health, 13, 960 (2016).

    Article  Google Scholar 

  2. W. T. Kwok, Energy and Buildings, 130, 637 (2016).

    Article  Google Scholar 

  3. M. E. Jenkin, R. G. Derwent and T. J. Wallington, Atmos. Environ., 163, 128 (2017).

    Article  CAS  Google Scholar 

  4. W. Wu, B. Zhao, S. Wang and J. Hao, J. Environ. Sci., 53, 224 (2017).

    Article  Google Scholar 

  5. A. M. Vandenbroucke, R. Morent, N. De Geyter and C. Leys, J. Hazard. Mater., 195, 30 (2011).

    Article  CAS  Google Scholar 

  6. M. Ondarts, W. Hajji, J. Outin, T. Bejat and E. Gonze, Chem. Eng. Res. Des., 118, 194 (2017).

    Article  CAS  Google Scholar 

  7. P. Liang, W. Jiang, L. Zhang, J. Wu, J. Zhang and D. Yang, Process Saf. Environ. Prot., 94, 380 (2015).

    Article  CAS  Google Scholar 

  8. M. Bahri, F. Haghighat, S. Rohani and H. Kazemian, Chem. Eng. J., 302, 204 (2016).

    Article  CAS  Google Scholar 

  9. H. Zhang, K. Li, C. Shu, Z. Lou, T. Sun and J. Jia, Chem. Eng. J., 256, 107 (2014).

    Article  CAS  Google Scholar 

  10. R. Brandenburg, Plasma Sources Sci. Technol., 27, 1 (2018).

    Article  Google Scholar 

  11. H. P. Nguyen, M. J. Park, S. B. Kim, H. J. Kim, L. J. Baik and Y. M. Jo, J. of Cleaner Production, 198, 1232 (2018)

    Article  CAS  Google Scholar 

  12. Y. F. Guo, D. Q. Ye, Y. F. Tian and K. F. Chen, Plasma Chem. Plasma Process, 26, 237 (2006).

    Article  CAS  Google Scholar 

  13. J. Van Durme, J. Dewulf, W. Sysmans, C. Leys and H. Van Langenhove, Chemosphere, 68, 1821 (2007).

    Article  CAS  Google Scholar 

  14. A. K. Gupta and B. Modi, J. Inst. Eng. India, Ser. A, 99, 565 (2018).

    Article  CAS  Google Scholar 

  15. C. J. Chang, S. F. Cheng, P. T. Chang and S. W. Tsai, Indoor Air, 28, 173 (2018).

    Article  CAS  Google Scholar 

  16. M. Ebrahemzadih, S. Sadeghi, P. Mozaffari and H. Salehzadeh, J. Adv. Environ. Health Res., 6, 67 (2018).

    CAS  Google Scholar 

  17. M. S. Yoon, Y. J. Choi and H. W. Ryu, J. of Odor and Indoor Environment, 15, 319 (2016).

    Article  Google Scholar 

  18. O. H. Park, K. S. Lee, K. W. Min, G. W. Cho, K. J. Yoon, W. S. Jeong, Y. G. Cho, E. S. Kim and J. S. Yang, J. of Korean Society of Occupational and Environmental Hygiene, 26, 159 (2016).

    Article  Google Scholar 

  19. J. Zheng, Y Yu, Z. Mo, Z. Zhang, X. Wang, S. Yin, K. Peng, Y. Yang, X. Feng and H. Cai, Sci. Total Environ., 456–457, 127 (2013).

    Article  Google Scholar 

  20. S. O. Baek, L. Narayana and Y. K. Seo, Sensors, 15, 19102 (2015).

    Article  CAS  Google Scholar 

  21. L. J. Baik, Plasma Generating Apparatus for Air Cleaning and Sterilizing. KR Patent, 1010037290000 (2010)

  22. H. M. McNair, J. M. Miller and N. H. Show, Basic Gas Chromatography, Wiley, New Jersey (2019).

    Book  Google Scholar 

  23. T. C. Manley, J. Electrochem. Soc., 84(1), 83 (1943).

    Article  Google Scholar 

  24. H. Huang, D. Ye, D. Y. Leung, F. Feng and X. Guan, J. Mol. Catal. A Chem., 336, 87 (2015).

    Article  Google Scholar 

  25. G. Xiao, W. Xu, R. Wu, M. Ni, C. Du, X. Gao, Z. Luo and K. Cen, Plasma Chemistry and Plasma Processing, 34, 1033 (2014).

    Article  CAS  Google Scholar 

  26. K. Urashima and J. Chang, IEE Transactions on Dielectrics and Electrical Insulation, 7, 602 (2000).

    Article  CAS  Google Scholar 

  27. O. Karatum and M. A. Deshusses, Chem. Eng. J., 294, 308 (2016).

    Article  CAS  Google Scholar 

  28. Q. Jin, B. Jiang, J. Han and S. Yao, Chem. Eng. J., 286, 300 (2016).

    Article  CAS  Google Scholar 

  29. F. Holzer, F. D. Kopinke and U. Roland, Chem. Eng. J., 334, 1988 (2018).

    Article  CAS  Google Scholar 

  30. R. Rostami, G. Moussavi, S. Darbari and A. Jonidi Jafari, Plasma Sci. Technol., 21, 095501 (2019).

    Article  CAS  Google Scholar 

  31. M. Aghbolaghy, J. Soltan and R. Sutarto, Chem. Eng. Res. Des., 128, 73 (2017).

    Article  CAS  Google Scholar 

  32. L. Jiang, G. Nie, R. Zhu, J. Wang, J. Chen, Y. Mao, Z. Cheng and W. A. Anderson, J. Environ. Sci., 55, 266 (2016).

    Article  Google Scholar 

  33. Z. Zhang, Z. Jiang and W. Shangguan, Catalysis Today, 264, 270 (2016).

    Article  CAS  Google Scholar 

  34. Y. S. Son, Chem. Eng. J., 316, 60 (2017).

    Article  Google Scholar 

  35. M. F. Mustafa, X. Fu, Y. Liu, Y. Abbas, H. Wang and W. Lu, J. Hazard. Mater., 347, 317 (2018).

    Article  CAS  Google Scholar 

  36. X. Zhang, B. J. Lee, H. Im and M. S. Cha, IEEE Trans. Plasma Sci., 44, 2288 (2016).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This research was supported by the Technology Development Program to Solve Climate Changes of the National Research Foundation (NRF) funded by the Ministry of Science, ICT (2017M1 A2A2086819).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Young Min Jo.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Santos, C.A., Phuong, N.H., Park, M.J. et al. Decomposition of indoor VOC pollutants using non-thermal plasma with gas recycling. Korean J. Chem. Eng. 37, 120–129 (2020). https://doi.org/10.1007/s11814-019-0406-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0406-8

Keywords

Navigation