Skip to main content
Log in

Carbon supported palladium-copper bimetallic catalysts for promoting electrochemical oxidation of formic acid and its utilization in direct formic acid fuel cells

  • Materials (Organic, Inorganic, Electronic, Thin Films)
  • Published:
Korean Journal of Chemical Engineering Aims and scope Submit manuscript

Abstract

Carbon supported palladium-copper (Pd-Cu) bimetallic catalysts (PdxCuy/Cs) are fabricated by modified polyol method to enhance the reaction rate of formic acid oxidation reaction (FAOR) and the performance of direct formic acid fuel cell (DFAFC) through weakening the bond with the intermediate of formic acid. According to the evaluations, when the ratio of Pd and Cu is 3 : 1 (Pd3Cu1/C), catalytic activity is best. Its maximum current density is 1.68-times better than that of commercial Pd/C. Even from the optical and spectroscopic characterizations, such as TEM, EDS, XPS and XRD, Pd3Cu1/C shows an optimal particle size and a higher degree of alloying. This is because in Pd3Cu1/C catalyst, the d-band center that induces the weakening in adsorption of formate anion groups to Pd surface is most positively shifted, and this positive shift promotes the reaction rate of FAOR, which is the rate determining step. When the performance of DFAFCs using the PdxCuy/C catalysts is measured, the maximum power density (MPD) of DFAFC using Pd3Cu1/C catalyst is 158 mW cm−2, and this is the best MPD compared to that of DFAFCs using other PdxCuy/C catalysts. In addition, in a comparison with commercial Pd/C catalyst, when the same amount of catalyst is loaded, MPD of DFAFC using Pd3Cu1/C catalyst is 22.5% higher than that of DFAFC using commercial Pd/C.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. K. Hansen, C. Breyer and H. Lund, Energy, 175, 471 (2019).

    Article  Google Scholar 

  2. S. Jain, H. Y. Chen and J. Schwank, J. Power Sources, 160, 474 (2006).

    Article  CAS  Google Scholar 

  3. T. E. Lipman, J. L. Edwards and D. M. Kammen, Energy Policy, 32, 101 (2004).

    Article  Google Scholar 

  4. C. Noh, M. Jung, D. Henkensmeier, S. W. Nam and Y. Kwon, ACS Appl. Mater. Interfaces, 9, 36799 (2017).

    Article  CAS  PubMed  Google Scholar 

  5. H. Y. Jung, S. Jeong and Y. Kwon, J. Electrochem. Soc., 163, A5090 (2016).

    Article  CAS  Google Scholar 

  6. W. Lee, C. Jo, S. Youk, J. Lee, Y. Chung and Y. Kwon, Appl. Surf. Sci., 429, 187 (2018).

    Article  CAS  Google Scholar 

  7. S. Jung, L.-H. Kim, Y. Kwon and S. H. Kim, Korean J. Chem. Eng., 31, 2081 (2014).

    Article  CAS  Google Scholar 

  8. K. Hyun, S. Kang and Y. Kwon, Korean J. Chem. Eng., 36, 500 (2019).

    Article  CAS  Google Scholar 

  9. H. Park, K. Kim, H. Kim, D. Kim, Y. Won and S. Kim, Korean J. Chem. Eng., 35, 1547 (2018).

    Article  CAS  Google Scholar 

  10. X. Cheng, Z. Shi, N. Glass, L. Zhang, J. Zhang, D. Song, Z. Liu, H. Wang and J. Shen, J. Power Sources, 165, 739 (2007).

    Article  CAS  Google Scholar 

  11. T. Kim, S. Lee and H. Park, Renew. Sustain. Energy Rev., 15, 3676 (2011).

    Article  CAS  Google Scholar 

  12. K. Hyun, J. H. Lee, C. W. Yoon and Y. Kwon, Int. J. Electrochem. Sci., 8, 11752 (2013).

    CAS  Google Scholar 

  13. S. M. Aceves, F. Espinosa-Loza, E. Ledesma-Orozco, T. O. Ross, A. H. Weisberg, T. C. Brunner and O. Kircher, Int. J. Hydrogen Energy, 35, 1219 (2010).

    Article  CAS  Google Scholar 

  14. T. Q. Hua, R. K. Ahluwalia, J.-K. Peng, M. Kromer, S. Lasher, K. McKenney, K. Law and K. Sinha, Int. J. Hydrogen Energy, 36, 3037 (2011).

    Article  CAS  Google Scholar 

  15. M. Christwardana, Y. Chung and Y. Kwon, Korean J. Chem. Eng., 34, 3009 (2017).

    Article  CAS  Google Scholar 

  16. M. Christwardana, Y. Chung and Y. Kwon, Korean J. Chem. Eng., 34, 2916 (2017).

    Article  CAS  Google Scholar 

  17. U. B. Demirci, J. Power Sources, 169, 239 (2007).

    Article  CAS  Google Scholar 

  18. Q. Weimin, D. P. Wilkinson, J. Shen, H. Wang and J. Zhang, J. Power Sources, 154, 202 (2006).

    Article  CAS  Google Scholar 

  19. X. Yu and P. G. Pickup, J. Power Sources, 182, 124 (2008).

    Article  CAS  Google Scholar 

  20. B. Hwang, S. Oh, M. Lee, D. Lee and K. Park, Korean J. Chem. Eng., 35, 2290 (2018).

    Article  CAS  Google Scholar 

  21. J. Choi, K. Jeong, Y. Dong, J. Han, T. Lim, J. Lee and Y. Sung, J. Power Sources, 163, 71 (2006).

    Article  CAS  Google Scholar 

  22. Y. Zhu, S. Y. Ha and R. I. Masel, J. Power Sources, 130, 8 (2004).

    Article  CAS  Google Scholar 

  23. A. Heinzel and V. M. Barragan, J. Power Sources, 84, 70 (1999).

    Article  CAS  Google Scholar 

  24. S. M. Baik, J. Kim, J. Han and Y. Kwon, Int. J. Hydrogen Energy, 36, 12583 (2011).

    Article  CAS  Google Scholar 

  25. S. M. Baik, J. Kim, J. Han, J. Kim and Y. Kwon, Int. J. Hydrogen Energy, 36, 14719 (2011).

    Article  CAS  Google Scholar 

  26. S. Kim, J. Han, Y. Kwon, K.-S. Lee, T.-H. Lim, S. W. Nam and J. H. Jang, Electrochim. Acta, 56, 7984 (2011).

    CAS  Google Scholar 

  27. Y. Kwon, S. Baek, B. Kwon, J. Kim and J. Han, Korean J. Chem. Eng., 27, 836 (2010).

    Article  CAS  Google Scholar 

  28. Z. Liu, L. Hong, M. P. Tham, T. H. Lim and H. Jiang, J. Power Sources, 161, 831 (2006).

    Article  CAS  Google Scholar 

  29. N. Uwitonze and Y.X. Chen, Chem. Sci. J., 8, 1000167 (2017).

    Google Scholar 

  30. Y. Yu, Y. E. Koh, H. Lim, B. Jeong, K. Isegawa, D. Kim, K. Ueda, H. Kondoh, K. Mase, E. J. Crumlin, P. N. Jr. Ross, J. Gallet, F. Bournel and B. S. Mun, J. Phys.: Condens. Matter, 29, 464001 (2017).

    Google Scholar 

  31. Y. Kwon, S. M. Baik, J. Han and J. Kim, Bull. Korean Chem. Soc., 33, 2539 (2012).

    Article  CAS  Google Scholar 

  32. J. Cao, Z. Zhu, W. Zhao, J. Xu and Z. Chen, Chin. J. Chem., 34, 1086 (2016).

    Article  CAS  Google Scholar 

  33. J. W. Hong, D. Kim, Y. W. Lee, M. Kim, S. W. Kang and S. W. Han, Angew. Chem., 123, 9038 (2011).

    Article  Google Scholar 

  34. X. Xiao, H. Nam, S.H. Bhang, S.Y. Lee, J. Ahn and T. Yu, Korean J. Chem. Eng., 35, 2379 (2018).

    Article  CAS  Google Scholar 

  35. M. Liao, Q. Hu, J. Zheng, Y. Li, H. Zhou, C. Zhong and B. H. Chen, Electrochim. Acta, 111, 504 (2013).

    Article  CAS  Google Scholar 

  36. M. A. Matin, J. Jang and Y. Kwon, J. Power Sources, 262, 356 (2014).

    Article  CAS  Google Scholar 

  37. S. Hu, F. Munoz, J. Noborikawa, J. Haan, L. Scudiero and S. Ha, Appl. Catal. B, 180, 758 (2016).

    Article  CAS  Google Scholar 

  38. S. Yang, J. Yang, Y. Chung and Y. Kwon, Int. J. Hydrogen Energy, 42, 17211 (2017).

    Article  CAS  Google Scholar 

  39. M. Chen, Z.-B. Wang, K. Zhou and Y.-Y. Chu, Fuel Cells, 10, 1171 (2010).

    Article  CAS  Google Scholar 

  40. J. A. Herron, J. Scaranto, P. Ferrin, S. Li and M. Mavrikakis, ACS Catal., 4, 4434 (2014).

    Article  CAS  Google Scholar 

  41. J. Scaranto and M. Mavrikakis, Surf. Sci., 650, 111 (2016).

    Article  CAS  Google Scholar 

  42. M. V. Castegnaro, A. Gorgeski, B. Balke, M. C. M. Alves and J. Morais, Nanoscale, 8, 641 (2016).

    Article  CAS  PubMed  Google Scholar 

  43. W. P. Zhou, A. Lewera, R. Larsen, R. I. Masel, P. S. Bagus and A. Wieckowski, J. Phys. Chem. B., 110, 13393 (2006).

    Article  CAS  PubMed  Google Scholar 

  44. C. Xu, Y. Liu, J. Wang, H. Geng and H. Qiu, J. Power Sources, 199, 124 (2012).

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work is supported by the Ministry of Science, ICT and Future Planning (MSIP) (No. 2016M1A2A2937143).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yongchai Kwon.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yang, J., Yang, S., Chung, Y. et al. Carbon supported palladium-copper bimetallic catalysts for promoting electrochemical oxidation of formic acid and its utilization in direct formic acid fuel cells. Korean J. Chem. Eng. 37, 176–183 (2020). https://doi.org/10.1007/s11814-019-0432-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11814-019-0432-6

Keywords

Navigation