Skip to main content
Log in

Sodium ion conducting nanocomposite polymer electrolyte membrane for sodium ion batteries

  • Original Paper
  • Published:
Journal of Solid State Electrochemistry Aims and scope Submit manuscript

Abstract

The paper reports effect of dispersion of titanium dioxide (TiO2) nanofiller on the sodium ion conducting nanocomposite polymer electrolyte membranes consisting of TiO2 dispersed membranes of poly(vinylidenedifluoride-co-hexafluoropropylene) (PVdF-HFP) soaked in a liquid electrolyte of sodium hexafluorophosphate (NaPF6) in ethylene carbonate (EC) and propylene carbonate (PC). The TiO2 dispersed membranes have been prepared by phase inversion technique. The structural and morphological properties of the polymer electrolyte membranes have been investigated using x-ray diffraction, Fourier transform infrared spectroscopy, and scanning electron microscopy. The membranes have been found to be highly porous with maximum porosity ~ 72% and liquid electrolyte uptake ~ 270%. Ionic conductivity of the electrolyte membranes containing different concentrations of TiO2 has been measured by complex impedance spectroscopy. The maximum room temperature ionic conductivity has been found to be ~ 1.3 × 10−3 S cm−1. The ionic conductivity measured with temperature has been found to follow VTF behavior. The ion transport numbers of the membranes have been studied using dc polarization, complex impedance, and cyclic voltammetry. The membranes have been found to be predominantly ionically conducting with Na+ transport number ~ 0.31. The electrochemical stability window of the membranes has also been measured using cyclic voltammetry and found to be 3.5 V.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13

Similar content being viewed by others

References

  1. Hwang JY, Myung ST, Sun YK (2017) Sodium-ion batteries: present and future. Chem Soc Rev 4(12):3529–3614

    Google Scholar 

  2. Nayak PK, Yang L, Brehm W, Adelhelm P (2018) From lithium-ion to sodium-ion batteries: advantages, challenges, and surprises. Angew Chem Int Ed 57(1):102–120

    CAS  Google Scholar 

  3. Adelhelm P, Hartmann P, Bender CL, Busche M, Eufinger C, Janek J (2015) From lithium to sodium: cell chemistry of room temperature sodium-air and sodium-sulfur batteries. Beilstein J Nanotechnol 6(1):1016–1055

    CAS  PubMed  PubMed Central  Google Scholar 

  4. Ye YS, Rick J, Hwang BJ (2013) Ionic liquid polymer electrolytes. J Mater Chem A 1:2719

    CAS  Google Scholar 

  5. Wang Y, Song S, Xu C, Hu N, Molenda J, Lu L (2019) Development of solid-state electrolytes for sodium-ion battery – a short review. Nano Mater Sci 1(2):91–100

    Google Scholar 

  6. Goodenough JB, Singh P (2015) Review—solid electrolytes in rechargeable electrochemical cells. J Electrochem Soc 162(14):A2387–A2392

    CAS  Google Scholar 

  7. Agrawal RC, Pandey GP (2008) Solid polymer electrolytes: materials designing and all-solid-state battery applications: an overview. J Phys D Appl Phys 41(223001):18

    Google Scholar 

  8. Prater KB (1994) Polymer electrolyte fuel cells: a review of recent developments. J Power Sources 51(1–2):129–144

    CAS  Google Scholar 

  9. Ngai KS, Ramesh S, Ramesh K, Juan JC (2016) A review of polymer electrolytes: fundamental, approaches and applications. Ionics 22(8):1259–1279

    CAS  Google Scholar 

  10. Mishra K (2013) Preparation, characterization and battery applications of proton conducting polymer electrolytes. Doctoral dissertation, Jaypee Institute of Information Technology

  11. Cheng X, Pan J, Zhao Y, Liao M, Peng H (2018) Gel polymer electrolytes for electrochemical energy storage. Adv Energy Mater 8(7):1–16

    Google Scholar 

  12. Stephan AM (2006) Review on gel polymer electrolytes for lithium batteries. Eur Polym J 42(1):21–42

    Google Scholar 

  13. Feuillade G, Perche P (1975) Ion-conductive macromolecular gels and membranes for solid lithium cells. J Appl Electrochem 5(1):63–69

    CAS  Google Scholar 

  14. Harshlata, Mishra K, Rai DK (2018) Electro-chemical studies on sodium ion conducting gel polymer electrolyte of PVdF-HFP+NaPF6. AIP Conf Proc 2009(1):020041

    Google Scholar 

  15. Sharma J, Hashmi SA (2013) Magnesium ion transport in poly(ethylene oxide)-based polymer electrolyte containing plastic-crystalline succinonitrile. J Solid State Electrochem 17(8):2283–2291

    CAS  Google Scholar 

  16. Mishra K, Hashmi SA, Rai DK (2014) Studies on a proton battery using gel polymer electrolyte. High Perform Polym 26(6):672–676

    Google Scholar 

  17. Tarascon JM, Gozdz AS, Schmutz C, Shokoohi F, Warren PC (1996) Performance of Bellcore’s plastic rechargeable Li-ion batteries. Solid State Ionics 86–88(PART 1):49–54

    Google Scholar 

  18. Huang X (2012) A lithium-ion battery separator prepared using a phase inversion process. J Power Sources 216:216–221

    CAS  Google Scholar 

  19. Pu W, He X, Wang L, Tian Z, Jiang C, Wan C (2006) Preparation of P (AN – MMA) microporous membrane for Li-ion batteries by phase inversion. J Membr Sci 280:6–9

    CAS  Google Scholar 

  20. Miao R, Liu B, Zhu Z, Liu Y, Li J, Wang X, Li Q (2008) PVDF-HFP-based porous polymer electrolyte membranes for lithium-ion batteries. J Power Sources 184:420–426

    CAS  Google Scholar 

  21. Asghar MR, Zhang Y, Wu A, Yan X, Shen S, Ke C (2018) Preparation of microporous cellulose / poly (vinylidene fluoride- hexa fl uoropropylene) membrane for lithium ion batteries by phase inversion method. J Power Sources 379(July 2017):197–205

    CAS  Google Scholar 

  22. Shalu S, Singh VK, Singh RK (2015) Development of ion conducting polymer gel electrolyte membranes based on polymer PVdF-HFP, BMIMTFSI ionic liquid and the Li-salt with improved electrical, thermal and structural properties. J Mater Chem C 3(28):7305–7318

    CAS  Google Scholar 

  23. Saito Y, Stephan AM, Kataoka H (2003) Ionic conduction mechanisms of lithium gel polymer electrolytes investigated by the conductivity and diffusion coefficient. Solid State Ionics 160(1–2):149–153

    CAS  Google Scholar 

  24. Yadav N, Mishra K, Hashmi SA (2017) Optimization of porous polymer electrolyte for quasi-solid-state electrical double layer supercapacitor. Electrochim Acta 235:570–582

    CAS  Google Scholar 

  25. Liang B, Jiang Q, Tang S, Li S, Chen X (2016) Porous polymer electrolytes with high ionic conductivity and good mechanical property for rechargeable batteries. J Power Sources 307:320–328

    CAS  Google Scholar 

  26. Ahn J, Wang GX, Liu HK, Dou SX (2003) Nanoparticle-dispersed PEO polymer electrolytes for Li batteries. J Power Sources 121:422–426

    Google Scholar 

  27. Liu W, Liu N, Sun J, Hsu PC, Li Y, Lee HW, Cui Y (2015) Ionic conductivity enhancement of polymer electrolytes with ceramic nanowire fillers. Nano Lett 15(4):2740–2745

    CAS  PubMed  Google Scholar 

  28. Croce F, Appetecchi GB, Persi L, Scrosati B (1998) Nanocomposite polymer electrolytes for lithium batteries. Nature 394(6692):456–458

    CAS  Google Scholar 

  29. Yadav N, Mishra K, Hashmi SA (2018) Nanofiller-incorporated porous polymer electrolyte for electrochemical energy storage devices. High Perform Polym 30(8):957–970

    CAS  Google Scholar 

  30. Harshlata, Mishra K, Rai DK (2018) Sodium ion conducting polymer electrolyte membrane prepared by phase inversion technique. AIP Conf Proc 1942(1):140050

    Google Scholar 

  31. Deka M, Kumar A (2009) Ionic transport in P (VdF – HFP)–PEO based novel microporous polymer electrolytes. Bull Mater Sci 32(6):627–632

    CAS  Google Scholar 

  32. Idris NH, Wang J (2012) Microporous gel polymer electrolytes for lithium rechargeable battery application. J Power Sources 201(March):294–300

    CAS  Google Scholar 

  33. Kumar D, Hashmi SA (2010) Ionic liquid based sodium ion conducting gel polymer electrolytes. Solid State Ionics 181(8–10):416–423

    CAS  Google Scholar 

  34. Watanabe M, Nagano S, Sanui K, Ogata N (1988) Estimation of Li+ transport number in polymer electrolytes by the combination of complex impedance and potentiostatic polarization measurements. Solid State Ionics 28–30(PART 2):911–917

    Google Scholar 

  35. Martins P, Lopes AC, Lanceros-mendez S (2014) Electroactive phases of poly(vinylidene fluoride): determination, processing and applications. Prog Polym Sci 39(4):683–706

    CAS  Google Scholar 

  36. Kumar D, Suleman M, Hashmi SA (2011) Studies on poly(vinylidene fluoride-co-hexa fluoropropylene) based gel electrolyte nanocomposite for sodium – sulfur batteries. Solid State Ionics 202(1):45–53

    CAS  Google Scholar 

  37. Sim LN, Majid SR, Arof AK (2012) FTIR studies of PEMA / PVdF-HFP blend polymer electrolyte system incorporated with LiCF3SO3 salt. Vib Spectrosc 58:57–66

    CAS  Google Scholar 

  38. Leon A, Reuquen P, Garín C, Segura R, Vargas P, Zapata P, Orihuela PA (2017) FTIR and Raman characterization of TiO2 nanoparticles coated with polyethylene glycol as carrier for 2-methoxyestradiol. Appl Sci 7(49):1–9

    CAS  Google Scholar 

  39. Bhatt C, Swaroop R, Arya A, Sharma AL (2015) Effect of nano-filler on the properties of polymer nanocomposite films of PEO/PAN complexed with NaPF6. J Mat Science and Engg B 5(11–12):418–434

    CAS  Google Scholar 

  40. Sim LN, Majid SR, Arof AK (2014) Effects of 1–butyl–3–methyl imidazolium trifluoromethanesulfonate ionic liquid in poly(ethyl methacrylate)/poly (vinylidenefluoride–co–hexafluoropropylene) blend based polymer electrolyte system. Electrochim Acta 123:190–197

    CAS  Google Scholar 

  41. Sharma S, Pathak D, Dhiman N, Kumar R, Kumar M (2019) FTIR, thermal and ionic conductivity studies of nanocomposite polymer electrolytes. Surf Innov 7(1):51–58

    Google Scholar 

  42. Mishra K, Hashmi SA, Rai DK (2013) Nanocomposite blend gel polymer electrolyte for proton battery application. J Solid State Electrochem 17(3):785–793

    CAS  Google Scholar 

  43. Pandey GP, Agrawal RC, Hashmi SA (2011) Magnesium ion-conducting gel polymer electrolytes dispersed with fumed silica for rechargeable magnesium battery application. J Solid State Electrochem 15:2253–2264

    CAS  Google Scholar 

  44. Kumar D, Suleman M, Hashmi SA (2011) Studies on poly (vinylidene fl uoride-co-hexa fl uoropropylene) based gel electrolyte nanocomposite for sodium – sulfur batteries. Solid State Ionics 202(1):45–53

    CAS  Google Scholar 

  45. Kumar D, Hashmi SA (2010) Ion transport and ion – filler-polymer interaction in poly (methyl methacrylate)-based , sodium ion conducting , gel polymer electrolytes dispersed with silica nanoparticles. J Power Sources 195(15):5101–5108

    CAS  Google Scholar 

  46. Pandey GP, Agrawal RC, Hashmi SA (2009) Magnesium ion-conducting gel polymer electrolytes dispersed with nanosized magnesium oxide. J Power Sources 190:563–572

    CAS  Google Scholar 

Download references

Acknowledgments

We acknowledge the financial support received from Science and Engineering Research Board, a statutory body of Department of Science and Technology, Government of India (File No: YSS/2015/001234) and research facilities provided by JIIT, Noida. One of us (Harshlata) is also thankful to JIIT, Noida, for providing research fellowship.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to D. K. Rai.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Verma, H., Mishra, K. & Rai, D.K. Sodium ion conducting nanocomposite polymer electrolyte membrane for sodium ion batteries. J Solid State Electrochem 24, 521–532 (2020). https://doi.org/10.1007/s10008-019-04490-4

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10008-019-04490-4

Keywords

Navigation