Skip to main content
Log in

Synergistic ethylcellulose/polyphosphoric acid modification of bitumen for paving applications

  • Original Article
  • Published:
Materials and Structures Aims and scope Submit manuscript

Abstract

A lignocellulosic material, like ethylcellulose (EC), is assessed for bitumen modification, as a more sustainable alternative to polymers derived from non-renewable sources. However, ethylcellulose alone hardly enhances bitumen performance. This work studies novel bituminous binders prepared with ethylcellulose powder and polyphosphoric acid (PPA) as bitumen modifiers for paving applications. Rheological tests demonstrated that the addition of 0.5 wt% PPA to a binder containing 5 wt% EC, along with a thermal curing, leads to binders with improved rutting resistance at high in-service temperatures, compared to binders prepared solely with EC or PPA. TLC–FID chromatography, FTIR spectroscopy and modulated DSC were conducted on binders to shed some light on modification route. From them, it is possible to state that the rheological enhancement is related to a change in SARAs fractions (i.e., binder colloidal index), derived from the asphaltenes disaggregation and formation of new phosphorylated adducts. Therefore, the use of ethylcellulose as lignocellulosic raw material seems to be a promising alternative to design bituminous binders for paving applications with enhanced rheological properties at high in-service temperatures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lesueur D (2009) The colloidal structure of bitumen: consequences on the rheology and on the mechanisms of bitumen modification. Adv Colloid Interface 145:42–82. https://doi.org/10.1016/j.cis.2008.08.011

    Article  Google Scholar 

  2. Polacco G, Filippi S, Merusi F, Stastna G (2015) A review of the fundamentals of polymer-modified asphalts: asphalt/polymer interactions and principles of compatibility. Adv Colloid Interface 224:72–112. https://doi.org/10.1016/j.cis.2015.07.010

    Article  Google Scholar 

  3. Adedeji A, Grünfelder T, Bates FS, Macosko CW, Stroup-Gardiner M, Newcomb DE (1996) Asphalt modified by SBS triblock copolymer: structures and properties. Polym Eng Sci 36:1707–1723. https://doi.org/10.1002/pen.10567

    Article  Google Scholar 

  4. Zanzotto L, Stasna J, Vacin O (2000) Thermomechanical properties of several polymer modified asphalt. Appl Rheol 10:185–191

    Article  Google Scholar 

  5. Lu X, Isacsson J, Ekblad J (2003) Influence of polymer modification on low temperature behaviour of bituminous binders and mixtures. Mater Struct 36:652–656. https://doi.org/10.1007/BF02479497

    Article  Google Scholar 

  6. Cuciniello G, Leandri P, Filippi S, Lo Presti D, Losa M, Airey G (2018) Effect of ageing on the morphology and creep and recovery of polymer-modified bitumens. Mater Struct 51:136. https://doi.org/10.1617/s11527-018-1263-3

    Article  Google Scholar 

  7. Laukkanen OV, Soenen H, Henning Winter H, Seppälä J (2018) Low-temperature rheological and morphological characterization of SBS modified bitumen. Constr Build Mater 179:348–359. https://doi.org/10.1016/j.conbuildmat.2018.05.160

    Article  Google Scholar 

  8. Šušteršič E, Tušar M, Zupančič Valant A (2014) Asphalt concrete modification with waste PMMA/ATH. Mater Struct 47:1817–1824

    Article  Google Scholar 

  9. Vila-Cortavitarte M, Lastra-González P, Calzada-Pérez MA, Indacoeche-Vega I (2018) Analysis of the influence of using recycled polystyrene as a substitute for bitumen in the behaviour of asphalt concrete mixtures. J Clean Prod 170:1279–1287. https://doi.org/10.1016/j.jclepro.2017.09.232

    Article  Google Scholar 

  10. Cuadri AA, García-Morales M, Navarro FJ, Partal P (2013) Isocyanate-functionalized castor oil as a novel bitumen modifier. Chem Eng Sci 97:320–327. https://doi.org/10.1016/j.ces.2013.04.045

    Article  Google Scholar 

  11. Cuadri AA, García-Morales M, Navarro FJ, Partal P (2014) Effect of transesterification degree and post-treatment on the in-service performance of NCO-functionalized vegetable oil bituminous products. Chem Eng Sci 111:126–134. https://doi.org/10.1016/j.ces.2014.02.028

    Article  Google Scholar 

  12. Carrera V, Cuadri AA, García-Morales M, Partal P (2015) The development of polyurethane modified bitumen emulsions for cold mix applications. Mater Struct 48:3407–3414. https://doi.org/10.1617/s11527-014-0408-2

    Article  Google Scholar 

  13. Martinez A, Paez A, Martin N (2008) Rheological modification of bitumens with new poly-functionalized furfural analogs. Fuel 87:1148–1154. https://doi.org/10.1016/j.fuel.2007.07.010

    Article  Google Scholar 

  14. Masson FJ (2008) Brief review of the chemistry of polyphosphoric acid (PPA) and bitumen. Energy Fuel 22:2637–2640. https://doi.org/10.1021/ef800120x

    Article  Google Scholar 

  15. Baldino N, Gabriele D, Lupi FP, Oliviero Rossi C, Caputo P, Falvo T (2013) Rheological effects on bitumen of polyphosphoric acid (PPA) addition. Constr Build Mater 40:397–404. https://doi.org/10.1016/j.conbuildmat.2012.11.001

    Article  Google Scholar 

  16. Ramayya VV, Ram VV, Krishnaiah S, Sandra AK (2016) Performance of VG30 paving grade bitumen modified with polyphosphoric acid at medium and high temperature regimes. Constr Build Mater 105:157–164. https://doi.org/10.1016/j.conbuildmat.2015.12.021

    Article  Google Scholar 

  17. Yan K, Zhang H, Xu H (2013) Effect of polyphosphoric acid on physical properties, chemical composition and morphology of bitumen. Constr Build Mater 47:92–98. https://doi.org/10.1016/j.conbuildmat.2013.05.004

    Article  Google Scholar 

  18. Pérez IP, Rodríguez Passandín AM, Pais JC, Alves Pereira PA (2019) Use of lignin biopolymer from industrial waste as bitumen extender for asphalt mixtures. J Clean Prod 20:87–98. https://doi.org/10.1016/j.jclepro.2019.02.082

    Article  Google Scholar 

  19. Tu LL, Wu SP, Liu G, Zhou XX, Ma SK (2016) Effect of the welan gum biopolymer on rheological properties and storage stability of bitumens. J Test Eval 44:2211–2218

    Article  Google Scholar 

  20. Ameri M, Mohammadi R, Vamegh M, Molayem M (2017) Evaluation the effects of nanoclay on permanent deformation behavior of stone mastic asphalt mixtures. Constr Build Mater 156:107–113. https://doi.org/10.1016/j.conbuildmat.2017.07.055

    Article  Google Scholar 

  21. Andrés-Valeri VC, Rodriguez-Torres J, Calzada-Perez MA, Rodriguez-Hernandez J (2018) Exploratory study of porous asphalt mixtures with additions of reclaimed tetra pak material. Constr Build Mater 160:233–239. https://doi.org/10.1016/j.conbuildmat.2017.11.067

    Article  Google Scholar 

  22. Chen JS, Lin KY (2005) Mechanism and behavior of bitumen strength reinforcement using fibers. J Mater Sci 40:87–95. https://doi.org/10.1007/s10853-005-5691-4

    Article  Google Scholar 

  23. Eskandarsefat S, Hofko B, Rossi CO, Sangiorgi C (2019) Fundamental properties of bitumen binders containing novel cellulose-based poly-functional fibres. Compos Part B Eng 163:339–350. https://doi.org/10.1016/j.compositesb.2018.11.031

    Article  Google Scholar 

  24. Tayfur S, Ozen H, Aksoy A (2007) Investigation of rutting performance of asphalt mixtures containing polymer modifiers. Constr Build Mater 21:328–337. https://doi.org/10.1016/j.conbuildmat.2005.08.014

    Article  Google Scholar 

  25. Chen Z, Peng J, Ge L, Xu Z (2015) Demulsifying water-in-oil emulsions by ethyl cellulose demulsifiers studied using focused beam reflectance measurement. Chem Eng Sci 130:254–263. https://doi.org/10.1016/j.ces.2015.03.014

    Article  Google Scholar 

  26. Lin F, He L, Hou J, Masliyah J, Xu Z (2016) Role of ethyl cellulose in bitumen extraction from oil sands ores using an aqueous–nonaqueous hybrid process. Energy Fuel 30:121–129. https://doi.org/10.1021/acs.energyfuels.5b01960

    Article  Google Scholar 

  27. Yang F, Tchoukov P, Qiao P, Ma X, Pensini E, Dabros T, Czarnecki J, Xu Z (2018) Studying demulsification mechanisms of water-in-crude oil emulsions using a modified thin liquid film technique. Colloid Surface A 540:215–223. https://doi.org/10.1016/j.colsurfa.2017.12.056

    Article  Google Scholar 

  28. Desseaux S, dos Santos S, Geiger T, Tingaut P, Zimmermann T, Partl MN, Poulikakos LD (2018) Improved mechanical properties of bitumen modified with acetylated cellulose fibers. Compos Part B Eng 140:139–144. https://doi.org/10.1016/j.compositesb.2017.12.010

    Article  Google Scholar 

  29. Ecker A (2001) The application of Iatroscan-technique for analysis of bitumen. Pet Coal 41:51–53

    Google Scholar 

  30. Yadollahi G, Mollahosseini HS (2011) Improving the performance of Crumb Rubber bitumen by means of Poly Phosphoric Acid (PPA) and Vestenamer additives. Constr Build Mater 25:3108–3116. https://doi.org/10.1016/j.conbuildmat.2010.12.038

    Article  Google Scholar 

  31. Zhang F, Hu C, Zhang Y (2018) Influence of poly(phosphoric acid) on the properties and structure of ethylene–vinyl acetate-modified bitumen. J Appl Polym Sci 135:46553. https://doi.org/10.1002/app.46553

    Article  Google Scholar 

  32. Rossi CO, Spadafora A, Teltayev B, Izmailova G, Amerbayev Y, Bortolotti V (2015) Polymer modified bitumen: rheological properties and structural characterization. Colloid Surface A 480:390–397. https://doi.org/10.1016/j.colsurfa.2015.02.048

    Article  Google Scholar 

  33. Gama DA, Júnior JMR, Alves de Melo TJ, Guedes Rodrigues JK (2016) Rheological studies of asphalt modified with elastomeric polymer. Constr Build Mater 106:290–295. https://doi.org/10.1016/j.conbuildmat.2015.12.142

    Article  Google Scholar 

  34. Martín-Alfonso MJ, Partal P, Navarro FJ, García-Morales M, Gallegos C (2008) Use of a MDI-functionalized reactive polymer for the manufacture of modified bitumen with enhanced properties for roofing applications. Eur Polym J 44:1451–1461. https://doi.org/10.1016/j.eurpolymj.2008.02.026

    Article  Google Scholar 

  35. Yuliestyan A, Cuadri AA, García-Morales M, Partal P (2016) Influence of polymer melting point and Melt Flow Index on the performance of ethylene-vinyl-acetate modified bitumen for reduced-temperature application. Mater Des 96:180–188. https://doi.org/10.1016/j.matdes.2016.02.003

    Article  Google Scholar 

  36. Martin-Alfonso JE, Cuadri AA, Torres J, Hidalgo ME, Partal P (2019) Use of plastic wastes from greenhouse in asphalt mixes manufactured by dry process. Road Mater Pavement 20:S265–S281. https://doi.org/10.1080/14680629.2019.1588776

    Article  Google Scholar 

  37. Yu J, Cong P, Wu S (2009) Laboratory investigation of the properties of asphalt modified with epoxy resin. J Appl Polym Sci 113:3557–3563. https://doi.org/10.1002/app.30324

    Article  Google Scholar 

  38. Cuadri AA, Navarro FJ, García-Morales M, Bolívar JP (2014) Valorization of phosphogypsum waste as asphaltic bitumen modifier. J Hazard Mater 279:11–16. https://doi.org/10.1016/j.jhazmat.2014.06.058

    Article  Google Scholar 

  39. Ge D, Yan K, You L, Wang Z (2017) Modification mechanism of asphalt modified with Sasobit and Polyphosphoric acid (PPA). Constr Build Mater 143:419–428. https://doi.org/10.1016/j.conbuildmat.2017.03.043

    Article  Google Scholar 

  40. Masson JF, Gagne M, Robertson G, Collins P (2008) Reactions of polyphosphoric acid and bitumen model compounds with oxygenated functional groups: Where is the phosphorylation? Energy Fuel 22:4151–4157. https://doi.org/10.1021/ef800511v

    Article  Google Scholar 

  41. Le Guern M, Chailleux E, Farcas F, Dreessen S, Mabille I (2010) Physico-chemical analysis of five hard bitumens: identification of chemical species and molecular organization before and after artificial aging. Fuel 89:3330–3339. https://doi.org/10.1016/j.fuel.2010.04.035

    Article  Google Scholar 

  42. Mouillet V, Farcas F, Besson S (2008) Ageing by UV radiation of an elastomer modified bitumen. Fuel 87:2408–2419. https://doi.org/10.1016/j.fuel.2008.02.008

    Article  Google Scholar 

  43. Navarro FJ, Partal P, García-Morales M, Martín-Alfonso MJ, Martinez-Boza F, Gallegos C, Bordado JCM, Diogo AC (2009) Bitumen modification with reactive and non-reactive (virgin and recycled) polymers: a comparative analysis. J Ind Eng Chem 15:458–464. https://doi.org/10.1016/j.jiec.2009.01.003

    Article  Google Scholar 

  44. Masson FJ, Polomark GM (2001) Bitumen microstructure by modulated differential scanning calorimetry. Thermochim Acta 374:105–114. https://doi.org/10.1016/S0040-6031(01)00478-6

    Article  Google Scholar 

  45. Masson FJ, Polomark GM, Collins P (2002) Time-dependent microstructure of bitumen and its fractions by modulated differential scanning calorimetry. Energy Fuel 16:470–476. https://doi.org/10.1021/ef010233r

    Article  Google Scholar 

  46. Baldino N, Gabriele D, Oliviero Rossi C, Seta L, Lupi FR, Caputo P (2012) Low temperature rheology of polyphosphoric acid (PPA) added bitumen. Constr Build Mater 36:592–596. https://doi.org/10.1016/j.conbuildmat.2012.06.011

    Article  Google Scholar 

Download references

Acknowledgements

This work was founded by the “Ministerio de Economía y Competitividad, Gobierno de España” (Project CTQ2017-89792-R, AEI/FEDER, UE) and the “Consejería de Economía y Conocimiento, Junta de Andalucía” (PO FEDER 2014-2020, Project UHU-1256916).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to A. A. Cuadri.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Human and animal rights

This research does not include any study with humans and animals performed by the authors.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Cuadri, A.A., Navarro, F.J. & Partal, P. Synergistic ethylcellulose/polyphosphoric acid modification of bitumen for paving applications. Mater Struct 53, 6 (2020). https://doi.org/10.1617/s11527-019-1437-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1617/s11527-019-1437-7

Keywords

Navigation