Skip to main content

Advertisement

Log in

Optimizing Integrated Electrode Design for Irreversible Electroporation of Implanted Polymer Scaffolds

  • Original Article
  • Published:
Annals of Biomedical Engineering Aims and scope Submit manuscript

Abstract

Irreversible electroporation (IRE) is an emerging technology for non-thermal ablation of solid tumors. This study sought to integrate electrodes into microporous poly(caprolactone) (PCL) scaffolds previously shown to recruit metastasizing cancer cells in vivo in order to facilitate application of IRE to disseminating cancer cells. As the ideal parallel plate geometry would render much of the porous scaffold surface inaccessible to infiltrating cells, numerical modeling was utilized to predict the spatial profile of electric field strength within the scaffold for alternative electrode designs. Metal mesh electrodes with 0.35 mm aperture and 0.16 mm wire diameter established electric fields with similar spatial uniformity as the parallel plate geometry. Composite PCL-IRE scaffolds were fabricated by placing cylindrical porous PCL scaffolds between two PCL dip-coated stainless steel wire meshes. PCL-IRE scaffolds exhibited no difference in cell infiltration in vivo compared to PCL scaffolds. In addition, upon application of IRE in vivo, cells infiltrating the PCL-IRE scaffolds were successfully ablated, as determined by histological analysis 3 days post-treatment. The ability to establish homogeneous electric fields within a biomaterial that can recruit metastatic cancer cells, especially when combined with immunotherapy, may further advance IRE technology beyond solid tumors to the treatment of systemic cancer.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Figure 1
Figure 2
Figure 3
Figure 4
Figure 5
Figure 6
Figure 7
Figure 8

Similar content being viewed by others

References

  1. Azarin, S. M., J. Yi, R. M. Gower, B. A. Aguado, M. E. Sullivan, A. G. Goodman, E. J. Jiang, S. S. Rao, Y. Ren, S. L. Tucker, V. Backman, J. S. Jeruss, and L. D. Shea. In vivo capture and label-free detection of early metastatic cells. Nat. Commun. 6:8094, 2015.

    Article  Google Scholar 

  2. Bersani, F., J. Lee, M. Yu, R. Morris, R. Desai, S. Ramaswamy, M. Toner, D. A. Haber, and B. Parekkadan. Bioengineered implantable scaffolds as a tool to study stromal-derived factors in metastatic cancer models. Cancer Res. 74:7229–7238, 2014.

    Article  CAS  Google Scholar 

  3. Chu, K. F., and D. E. Dupuy. Thermal ablation of tumours: biological mechanisms and advances in therapy. Nat. Rev. Cancer 14:199–208, 2014.

    Article  CAS  Google Scholar 

  4. Davalos, R. V., L. M. Mir, and B. Rubinsky. Tissue ablation with irreversible electroporation. Ann. Biomed. Eng. 33:223–231, 2005.

    Article  CAS  Google Scholar 

  5. de la Fuente, A., L. Alonso-Alconada, C. Costa, J. Cueva, T. Garcia-Caballero, R. Lopez-Lopez, and M. Abal. M-Trap: exosome-based capture of tumor cells as a new technology in peritoneal metastasis. J. Natl. Cancer Inst. 107:djv184, 2015.

    Article  Google Scholar 

  6. Faes, T. J. C., H. A. van der Meij, J. C. de Munck, and R. M. Heethaar. The electric resistivity of human tissues (100 Hz-10 MHz): a meta-analysis of review studies. Physiol. Meas. 20:R1–R10, 1999.

    Article  CAS  Google Scholar 

  7. Fernández-Periáñez, R., I. Molina-Privado, F. Rojo, I. Guijarro-Muñoz, V. Alonso-Camino, S. Zazo, M. Compte, A. Álvarez-Cienfuegos, A. M. Cuesta, D. Sánchez-Martín, A. M. Álvarez-Méndez, L. Sanz, and L. Álvarez-Vallina. Basement membrane-rich organoids with functional human blood vessels are permissive niches for human breast cancer metastasis. PLoS ONE 8:e72957, 2013.

    Article  Google Scholar 

  8. Fujino, T., Y. Yokoyama, and Y. H. Mori. Augmentation of laminar forced-convective heat transfer by the application of a transverse electric field. J. Heat Transfer 111:345, 1989.

    Article  CAS  Google Scholar 

  9. Goswami, I., S. Coutermarsh-Ott, R. G. Morrison, I. C. Allen, R. V. Davalos, S. S. Verbridge, and L. R. Bickford. Irreversible electroporation inhibits pro-cancer inflammatory signaling in triple negative breast cancer cells. Bioelectrochemistry 113:42–50, 2017.

    Article  CAS  Google Scholar 

  10. He, C., J. Wang, S. Sun, Y. Zhang, and S. Li. Immunomodulatory effect after irreversible electroporation in patients with locally advanced pancreatic cancer. J. Oncol. 2019. https://doi.org/10.1155/2019/9346017.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Jiang, C., R. V. Davalos, and J. C. Bischof. A review of basic to clinical studies of irreversible electroporation therapy. IEEE Trans. Biomed. Eng. 62:4–20, 2015.

    Article  Google Scholar 

  12. Jiang, C., Q. Shao, and J. Bischof. Pulse timing during irreversible electroporation achieves enhanced destruction in a hindlimb model of cancer. Ann. Biomed. Eng. 43:887–895, 2015.

    Article  Google Scholar 

  13. Kandušer, M., M. Šentjurc, and D. Miklavčič. Cell membrane fluidity related to electroporation and resealing. Eur. Biophys. J. 35:196–204, 2006.

    Article  Google Scholar 

  14. Ko, C.-Y., L. Wu, A. M. Nair, Y.-T. Tsai, V. K. Lin, and L. Tang. The use of chemokine-releasing tissue engineering scaffolds in a model of inflammatory response-mediated melanoma cancer metastasis. Biomaterials 33:876–885, 2012.

    Article  CAS  Google Scholar 

  15. Miklavčič, D., N. Pavšelj, and F. X. Hart. Electric properties of tissues. In: Wiley Encyclopedia of Biomedical Engineering, edited by M. Akay. New York: Wiley, 2006.

    Google Scholar 

  16. Moreau, J. E., K. Anderson, J. R. Mauney, T. Nguyen, D. L. Kaplan, and M. Rosenblatt. Tissue-engineered bone serves as a target for metastasis of human breast cancer in a mouse model. Cancer Res. 67:10304–10308, 2007.

    Article  CAS  Google Scholar 

  17. Narayanan, J. S. S., P. Ray, T. Hayashi, T. C. Whisenant, D. Vicente, D. A. Carson, A. M. Miller, S. P. Schoenberger, and R. R. White. Irreversible electroporation combined with checkpoint blockade and TLR7 stimulation induces antitumor immunity in a murine pancreatic cancer model. Cancer Immunol. Res. 7:1714–1726, 2019.

    Article  Google Scholar 

  18. Neal, R. E., J. H. Rossmeisl, J. L. Robertson, C. B. Arena, E. M. Davis, R. N. Singh, J. Stallings, and R. V. Davalos. Improved local and systemic anti-tumor efficacy for irreversible electroporation in immunocompetent versus immunodeficient mice. PLoS ONE 8:e64559, 2013.

    Article  CAS  Google Scholar 

  19. Pelaez, F., N. Manuchehrabadi, P. Roy, H. Natesan, Y. Wang, E. Racila, H. Fong, K. Zeng, A. M. Silbaugh, J. C. Bischof, and S. M. Azarin. Biomaterial scaffolds for non-invasive focal hyperthermia as a potential tool to ablate metastatic cancer cells. Biomaterials 166:27–37, 2018.

    Article  CAS  Google Scholar 

  20. Poste, G., J. Doll, I. R. Hart, and I. J. Fidler. In vitro selection of murine B16 melanoma variants with enhanced tissue-invasive properties. Cancer Res. 40:1636–1644, 1980.

    CAS  PubMed  Google Scholar 

  21. Rao, S. S., G. G. Bushnell, S. M. Azarin, G. Spicer, B. A. Aguado, J. R. Stoehr, E. J. Jiang, V. Backman, L. D. Shea, and J. S. Jeruss. Enhanced survival with implantable scaffolds that capture metastatic breast cancer cells in vivo. Cancer Res. 76:5209–5218, 2016.

    Article  CAS  Google Scholar 

  22. Ringel-Scaia, V. M., N. Beitel-White, M. F. Lorenzo, R. M. Brock, K. E. Huie, S. Coutermarsh-Ott, K. Eden, D. K. McDaniel, S. S. Verbridge, J. H. Rossmeisl, K. J. Oestreich, R. V. Davalos, and I. C. Allen. High-frequency irreversible electroporation is an effective tumor ablation strategy that induces immunologic cell death and promotes systemic anti-tumor immunity. EBioMedicine 44:112–125, 2019.

    Article  Google Scholar 

  23. Rossmeisl, J. H., P. A. Garcia, T. E. Pancotto, J. L. Robertson, N. Henao-Guerrero, R. E. Neal, T. L. Ellis, and R. V. Davalos. Safety and feasibility of the NanoKnife system for irreversible electroporation ablative treatment of canine spontaneous intracranial gliomas. J. Neurosurg. 123:1008–1025, 2015.

    Article  CAS  Google Scholar 

  24. Rubinsky, B., G. Onik, and P. Mikus. Irreversible electroporation: a new ablation modality—clinical implications. Technol. Cancer Res. Treat. 6:37–48, 2007.

    Article  Google Scholar 

  25. Sapareto, S. A., and W. C. Dewey. Thermal dose determination in cancer therapy. Int. J. Radiat. Oncol. 10:787–800, 1984.

    Article  CAS  Google Scholar 

  26. Scheffer, H. J., A. G. M. Stam, B. Geboers, L. G. P. H. Vroomen, A. Ruarus, B. de Bruijn, M. P. van den Tol, G. Kazemier, M. R. de Meijerink, and T. D. de Gruijl. Irreversible electroporation of locally advanced pancreatic cancer transiently alleviates immune suppression and creates a window for antitumor T cell activation. Oncoimmunology 2019. https://doi.org/10.1080/2162402X.2019.1652532.

    Article  PubMed  PubMed Central  Google Scholar 

  27. Shao, Q., F. Liu, C. Chung, K. Elahi-Gedwillo, P. P. Provenzano, B. Forsyth, and J. C. Bischof. Physical and chemical enhancement of and adaptive resistance to irreversible electroporation of pancreatic cancer. Ann. Biomed. Eng. 46:25–36, 2018.

    Article  Google Scholar 

  28. Shao, Q., S. O’Flanagan, T. Lam, P. Roy, F. Pelaez, B. J. Burbach, S. M. Azarin, Y. Shimizu, and J. C. Bischof. Engineering T cell response to cancer antigens by choice of focal therapeutic conditions. Int. J. Hyperth. 36:130–138, 2019.

    Article  CAS  Google Scholar 

  29. Stam, A. G. M., and T. D. de Gruijl. From local to systemic treatment: leveraging antitumor immunity following irreversible electroporation. In: Irreversible Electroporation in Clinical Practice, edited by M. R. Meijerink, H. J. Scheffer, and G. Narayanan. Cham: Springer International Publishing, 2018, pp. 249–270.

    Chapter  Google Scholar 

  30. Thibaudeau, L., A. V. Taubenberger, B. M. Holzapfel, V. M. Quent, T. Fuehrmann, P. Hesami, T. D. Brown, P. D. Dalton, C. A. Power, B. G. Hollier, and D. W. Hutmacher. A tissue-engineered humanized xenograft model of human breast cancer metastasis to bone. Dis. Model. Mech. 7:299–309, 2014.

    Article  CAS  Google Scholar 

  31. Xu, L., and A. Yamamoto. Characteristics and cytocompatibility of biodegradable polymer film on magnesium by spin coating. Colloids Surf. B Biointerfaces 93:67–74, 2012.

    Article  CAS  Google Scholar 

  32. Yarmush, M. L., A. Golberg, G. Serša, T. Kotnik, and D. Miklavčič. Electroporation-based technologies for medicine: principles, applications, and challenges. Annu. Rev. Biomed. Eng. 16:295–320, 2014.

    Article  CAS  Google Scholar 

  33. Zhao, J., X. Wen, L. Tian, T. Li, C. Xu, X. Wen, M. P. Melancon, S. Gupta, B. Shen, W. Peng, and C. Li. Irreversible electroporation reverses resistance to immune checkpoint blockade in pancreatic cancer. Nat. Commun. 10:899, 2019.

    Article  Google Scholar 

Download references

Acknowledgments

This study was supported by the Dr. Ralph and Marian Falk Medical Research Trust Bank of America, N.A., NIH T32GM008347 (T.L.), the Kwanjeong Educational Foundation (H.R.L.), the Kuhrmeyer Chair in Mechanical Engineering (J.C.B.), Boston Scientific Corporation (Q.S. and P.R.), and the Institute for Engineering in Medicine Cancer Animal Core at the University of Minnesota. The authors would like to thank C. Daniel Frisbie for assistance analyzing biomaterial resistivity and Colleen Forster for histological training and assistance. Parts of this work were carried out in the Characterization Facility, University of Minnesota, which receives partial support from the National Science Foundation through the MRSEC program. Research reported in this publication was supported by the National Center for Advancing Translational Sciences of the National Institutes of Health, United States, Award Number UL1TR000114. The content is solely the responsibility of the authors and does not necessarily represent the official views of the National Institutes of Health.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Samira M. Azarin.

Additional information

Associate Editor Cato Laurencin oversaw the review of this article.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 9514 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pelaez, F., Shao, Q., Ranjbartehrani, P. et al. Optimizing Integrated Electrode Design for Irreversible Electroporation of Implanted Polymer Scaffolds. Ann Biomed Eng 48, 1230–1240 (2020). https://doi.org/10.1007/s10439-019-02445-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10439-019-02445-4

Keywords

Navigation