Skip to main content

Advertisement

Log in

CdSe nanorod-reinforced poly(thiophene) composites in designing energy storage devices: study of morphology and dielectric behavior

  • Original Paper
  • Published:
Polymer Bulletin Aims and scope Submit manuscript

Abstract

The present study reports the findings about developing the energy storage resources following a green and economically viable method. Polythiophene (PTh) and its nanocomposites (PTh/CdSe) were synthesized using a chemical oxidative polymerization method. The FTIR spectra of the as-prepared composite confirm the presence of CdSe in PTh matrix. The XRD spectra suggest for the amorphous nature of native PTh which further changes into semicrystalline nature when CdSe was incorporated into it. PTh/CdSe nanocomposites showed both cubic and hexagonal phases, and the crystallite size was found to increase from 8 nm to 45 nm when CdSe was reinforced into the PTh matrix. Transmission electron microscopic images of pure PTh showed spherical morphology of the particles joined to each other through van der Waals forces. The doping of CdSe also results in appearance of needle-like nanostructures over PTh surfaces. These isolated needles have CdSe nanorod-like structures. Impedance data reveal that charge transfer resistance (Rct) of pure PTh is higher than that of the PTh/CdSe nanocomposites. The reduced charge transfer resistance (Rct) indicates that conductivity of nanocomposites is higher than that of the native one. When PTh was reinforced with the CdSe, they showed an increase in dielectric constant which is due to the alignment of polarization charges with increased frequency. This mechanism of polarization is helpful in increasing the charge storage capacity of the material. Thus, the observed results may open up doors of new avenues to design energy storage devices using conducting polymer/semiconductor nanocomposites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Ibanez-marin F, Morales-Verdejo C, Camarada MB (2017) Composites of electrochemically reduced graphene oxide and polythiophene and their application in supercapacitors. Int J Electrochem Sci 12:11546–11555

    CAS  Google Scholar 

  2. Tarascon JM, Armand M (2001) Issues and challenges facing rechargeable lithium batteries. Nature 414(6861):359–367

    CAS  PubMed  Google Scholar 

  3. Lipomi DJ, Bao Z (2011) Stretchable, elastic materials and devices for solar energy conversion. Energy Environ Sci 4:3314

    CAS  Google Scholar 

  4. Pan L, Qiu H, Duon C, Li Y, Pu L, Xu J, Shi Y (2010) Conducting polymer nanostructures: template synthesis and applications in energy storage. Int J Mol Sci 11(7):2636–2657

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Heeger AJ (2001) Semiconducting and metallic polymers: the fourth generation of polymeric materials (Nobel lecture). Angew Chem Int Ed 40:2591–2611

    CAS  Google Scholar 

  6. MacDiarmid AG (2001) “Synthetic metals”: a novel role for organic polymers (Nobel lecture). Angew Chem Int Edit 40:2581–2590

    CAS  Google Scholar 

  7. Shirakawa H (2001) The discovery of polyacetylene film: the dawning of an era of conducting polymers (Nobel lecture). Angew Chem Int Ed 40:2575–2580

    CAS  Google Scholar 

  8. Lee K, Cho S, Park SH, Heeger AJ, Lee CW, Lee SH (2006) Metallic transport in polyaniline. Nature 441:65–68

    CAS  PubMed  Google Scholar 

  9. Zhang LP, Peng H, Kilmartin PA, Soeller C, Travas-Sejdic J (2008) Poly(3,4-ethylenedioxythiophene) and polyaniline bilayer nanostructures with high conductivity and electrocatalytic activity. Macromolecules 41:7671–7678

    CAS  Google Scholar 

  10. Tseng RJ, Huang JX, Ouyang J, Kaner RB, Yang Y (2005) Polyaniline nanofiber/gold nanoparticle nanovolatile memory. Nano Lett 5:1077–1080

    CAS  PubMed  Google Scholar 

  11. Yesappa L, Niranjana M, Ashokkummar S, Vijetha H, Raghu S, Devendrappa H (2018) Characterization, electrical conductivity and electrochemical performance of polyaniline-LiClO4-CuO nano composite for energy storage applications characterization, electrical conductivity and electrochemical performance of polyaniline-LiClO4-CuO nano composite for energy storage applications. Polym Plast Technol Eng. https://doi.org/10.1080/03602559.2018.1466175

    Article  Google Scholar 

  12. Rahman MA, Kumar P, Park DS, Shim YB (2008) Electrochemical sensors based on organic conjugated polymer. Sensors 8:118–141

    CAS  PubMed  Google Scholar 

  13. Simon P, Gogotsi Y (2008) Materials for electrochemical capacitor. Nat Mater 7:845–854

    CAS  PubMed  Google Scholar 

  14. Wu CG, Bein T (1994) Conducting polyaniline filaments in a mesoporous channel host. Science 264:1757–1759

    CAS  PubMed  Google Scholar 

  15. Yin ZH, Long YZ, Gu CZ, Wan MX, Duvail JL (2009) Current–Voltage characteristics in individual polypyrrole nanotube, poly(3,4-ethylenedioxythiophene) nanowire, polyaniline nanotube, and cds nanorope. Nanoscale Res Lett 4:63–69

    CAS  Google Scholar 

  16. Pei QB, Inganas O (1992) Electrochemical applications of the bending beam method. 1. Mass transport and volume changes in polypyrrole during redox. J Phys Chem 96:10507–10514

    CAS  Google Scholar 

  17. Pei QB, Inganas O (1993) Electrochemical applications of the bending beam method. 2. Electroshrinking and slow relaxation in polypyrrole. J Phys Chem 97:6034–6041

    CAS  Google Scholar 

  18. Vijeth H, Yesappa L, Niranjana M, Ashokkumar SP, Devendrappa H (2017) Investigation on structural, optical and electrical of polythiophene-Al2O3 composites. AIP Conf Proc 1953:050008-1–050008-4

    Google Scholar 

  19. Ma X, Li G, Xu H, Wang M, Chen H (2006) Preparation of polythiophene composite film by in situ polymerization at room temperature and its gas response studies. Thin Soild Films 515(4):2700–2704

    CAS  Google Scholar 

  20. Kattimani J, Sankarappa T, Ashwajeet JS, Ramanna R, Praveenkumar K, Chandraprabha G (2015) DC conduction in polythiophene nanocomposites doped with V2O5. Res J Mater Sci 3(3):1–6

    CAS  Google Scholar 

  21. Murugavel S, Malathi M (2016) Synthesis and characterization of polythiophene nanofibers. Int J Chem Sci 14(1):363–371

    CAS  Google Scholar 

  22. Yamamoto T, Maruyama T, Zhou ZH, Miyazaki Y, Kanbara T, Sanechika K (1991) New method using nickel (0) complex for preparation of poly(p-phenylene), poly(2,5-thienylene) and related π-conjugated polymers. Synth Met 41:345

    CAS  Google Scholar 

  23. Chandraprabha G, Sankarappa T, Lokhande BJ, Sujatha T (2018) Studies on conduction mechanism, magnetization and electrochemical properties of polythiophene-cobalt nanocomposites. J Nanosci Technol 4(1):304–307

    Google Scholar 

  24. Phukan P, Saikia D (2013) Optical and structural investigation of CdSe quantum dots dispersed in PVA matrix and photovoltaic applications. Int J Photoenergy. https://doi.org/10.1155/2013/728280

    Article  Google Scholar 

  25. Kaur R, Tripathi SK (2015) Study of conductivity switching mechanism of CdSe/PVP nanocomposites for memory device application. Microelectron Eng 133:59–65

    CAS  Google Scholar 

  26. Ahmed RM (2017) Polymer nanocomposite dielectric and electrical properties with quantum dots nanofiller. Mod Phys Lett B 31(30):1750278. https://doi.org/10.1142/s0217984917502785

    Article  Google Scholar 

  27. Sakil M, Singh AK, Roy GS (2013) Study of the properties of nanocomposite cadmium sulphide (cds)\polythiophene(PTh) By TGA/DTA, XRD, UV–VIS spectroscopy, SEM-EDXA and FTIR. Researcher 5(1):51–54

    Google Scholar 

  28. Acharya A, Sahu S, Balamurgan S, Roy GS (2011) Effect of doping on nano cadmium–selenide (CdSe)-assessment through UV–VIS spectroscopy. Lat Am J Phys Educ 5(1):134–139

    Google Scholar 

  29. Acharya A, Mishra R, Roy GS (2010) Comparative study of performance of CdS, CdSe thin film CdS-PTh, CdSe-PTh nanocomposite thin films using SEM-EDXA(scanning electron microscope) and FTIR (Fourier transform infrared spectroscopy). Lat Am J Phys Educ 4(3):603–609

    Google Scholar 

  30. Yao J, Zhao GL, Han G (2003) Synthesis and characterization of the thiourea-capped CdS nanoparticles. J Mater Sci Lett 22:1491–1493

    CAS  Google Scholar 

  31. Tyagi C, Sharma A (2016) Optimization of structural and dielectric properties of CdSe loaded poly(diallyl dimethyl ammonium chloride) polymer in a desired frequency and temperature window. J Appl Phys 119:014108

    Google Scholar 

  32. Thirugnanam N, Govindarajan D (2016) Effect of Ni doping on the structural, optical and morphological properties of CdSe QDs by chemical precipitation method. J Mater Sci: Mater Electron 27:4571–4577

    CAS  Google Scholar 

  33. Kamat SV, Tamboli SH, Puri V, Puri RK, Yadav JB, Joo OS (2010) Optical and electrical properties of Polythiophene thin films: effect of post deposition heating. J Optoelectron Adv Mater 12(11):2301–2305

    CAS  Google Scholar 

  34. Karim MR, Lim KT, Lee CJ, Lee MS (2007) A facile synthesis of polythiophene nanowires. Synth Met 157:1008–1012

    CAS  Google Scholar 

  35. Gok A, Omastova M, Yavuz AG (2007) Synthesis and characterization of polythiophene prepared in the presence of surfactants. J Synth Met 157:23–29

    Google Scholar 

  36. Tiwari DC, Sen V, Sharma R (2012) Temperature dependent studies of electronic and dielectric properties of polythiophene based nanocomposite. Indian J Pure Appl Phys 50:49–56

    CAS  Google Scholar 

  37. Khan A, Abdullah MR, Parwaz Khan AA, Khan SB (2014) Electrical conductivity and ion-exchange kinetic studies of polythiophene Sn(IV)phosphate nanocomposite cation-exchanger. Arab J Chem 12:1652–1659

    Google Scholar 

  38. Najar MH, Majid K (2013) Synthesis, characterization, electrical and thermal properties of nanocomposite of polythiophene with nanophotoadduct: a potent composite for electronic use. J Mater Sci: Mater Electron 24:4332–4339

    CAS  Google Scholar 

  39. Chao PJ, Wang YJ, Lin FH (2012) The growth of CdSe quantum dots on a single wall carbon nanotubes template without organic solvent and surfactant. Ceram Int 38:547–552

    CAS  Google Scholar 

  40. Silva RA, Santos MJL, Rinaldi AW, Jarbin AJG, Oliverira MM (2007) Low coercive field and conducting nanocomposites formed by Fe3O4 and poly(thiophene). J Solid State Chem 180(12):3545–3550

    CAS  Google Scholar 

  41. Acharya A, Mishra R, Roy GS (2010) Characterization of CdSe/polythiophene nanocomposite by TGA/DTA, XRD, UV–VIS spectroscopy, SEM-EDXA and FTIR. Armen J Phys 3(3):195–202

    CAS  Google Scholar 

  42. Verma M, Patidar D, Sharma KB, Saxena NS (2016) Phase transformations and thermal stability of CdSe quantum dots: cubic to hexagonal. J Inorg Organomet Polym 26:75–80

    CAS  Google Scholar 

  43. Khan MH, Pal S, Bose E (2013) Room temperature frequency-dependent complex impedance and conductivity behavior of BaTiO3–La0.7Ca0.3MnO3 composites. Can J Phys 91:1029–1033

    CAS  Google Scholar 

  44. Pradhan DK, Choudhary RNP, Samantaray BK (2008) Studies of structural, thermal and electrical behavior of polymer nanocomposite electrolytes. Express Polym Lett 2(9):630–638

    CAS  Google Scholar 

  45. Sivaiah K, Naveen Kumar K, Naresh V, Buddhudu S (2011) Structural and optical properties of Li+: PVP & Ag+: PVP polymer films. Mater Sci Appl 2(11):1688

    CAS  Google Scholar 

  46. Jain R, Sinha A, Kumari N, Khan Ab L (2016) A polyaniline/graphene oxide nanocomposite as a voltammetric sensor for electroanalytical detection of clonazepam. Anal Methods 8:3034–3045

    CAS  Google Scholar 

  47. Khan Ab L, Jain R (2018) Polypyrrole/titanium dioxide nanocomposite sensor for the electrocatalytic quantification of sulfamoxole. Ionics 24:2473–2488. https://doi.org/10.1007/s11581-017-2365-6

    Article  CAS  Google Scholar 

  48. Bhatt R, Katare R, Bajpai AK (2014) Poly-dispersive nature of relaxation times characteristics of poly-(diamino-naphthalene) doped poly-(vinyl-alcohol) films from AC impedance analysis. Res J Chem Sci 4(8):82–87

    CAS  Google Scholar 

  49. Prateek VK Thakur, Gupta RK (2016) Recent progress on ferroelectric polymer-based nanocomposites for high energy density capacitors: synthesis, dielectric properties, and future aspects. Chem Rev 116:4260–4317

    CAS  PubMed  Google Scholar 

  50. Patidar D, Jain N, Saxena NS, Sharma K, Sharma TP (2006) Electrical properties of CdS/polythiophene heterojunction. Braz J Phys 36(4A):1210–1212

    CAS  Google Scholar 

Download references

Acknowledgments

The characterization of the material samples was done at RRCAT, Indore, India, and Central Instrumentation Facility (CIF), Jiwaji University Gwalior, India. The authors acknowledge the RRCAT and CIF authorities for the facilities extended for the present work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rashmi Singh.

Ethics declarations

Conflict of interest

The authors declare that they do not have any kind of conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Singh, R., Bajpai, A.K. & Shrivastava, A.K. CdSe nanorod-reinforced poly(thiophene) composites in designing energy storage devices: study of morphology and dielectric behavior. Polym. Bull. 78, 115–131 (2021). https://doi.org/10.1007/s00289-020-03104-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00289-020-03104-8

Keywords

Navigation