Skip to main content

Advertisement

Log in

Fabrication of hybrid CoMoO4–NiMoO4 nanosheets by chitosan hydrogel assisted calcinations method with high electrochemical performance

  • Original Paper: Nano-structured materials (particles, fibers, colloids, composites, etc.)
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

Herein, hybrid CoMoO4–NiMoO4 nanosheets (NSs) with mesoporous morphology were assembled using a chitosan hydrogel assisted calcination method. This unique architecture provides numerous channels for rapid diffusion of electrolyte ions, fast electron transfer and high electrochemical activity due to the synergistic effect between the CoMoO4 and NiMoO4. The assembled CoMoO4–NiMoO4 hybrid material can be a very good supercapacitor electrode, due to its high specific capacitance of 1940 F g−1 at the current density of 1 A g−1. Even at a current density as high as 20 A g−1, the CoMoO4–NiMoO4 electrode still delivers a high specific capacitance of 1280 F g−1, indicating its superior rate of specific capacitance 65.98% and excellent cycling stability with capacitance retention 99% after 5000 cycles. Furthermore, the as-prepared CoMoO4–NiMoO4 was employed as anode and activated carbon was used as cathode for solid-state asymmetric supercapacitor. Asymmetric supercapacitors with high power density and energy density (53.33 W h kg−1 at a power density of 800 W kg−1) were realized by improving the potential window with the voltage range from 0 to 1.6 V. These results indicate that the CoMoO4–NiMoO4 electrode shows potential application for high performance, environmentally friendly, and low-cost energy storage device.

The hybrid CoMoO4–NiMoO4 nanosheets with mesoporous morphology were assembled using chitosan hydrogel assisted calcinations method. This unique architecture composites exhibit high specific capacitance of 1940 F g−1 at the current density of 1 A g−1. Even at current density as high as 20 A g−1, the CoMoO4–NiMoO4 electrode still delivers a high specific capacitance of 1280 F g−1, indicating its superior rate of specific capacitance 65.98%.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Lu Y, Jiang K, Chen D, Shen GZ (2019) Wearable sweat monitoring system with integrated micro-supercapacitors. Nano Energy 58:624–632

    CAS  Google Scholar 

  2. Xie BQ, Yu MY, Lu LH, Feng HZ, Yang Y, Chen Y, Cui HD, Xiao RB, Liu J (2019) Pseudocapacitive Co9S8/graphene electrode for high-rate hybrid supercapacitors. Carbon 141:134–142

    CAS  Google Scholar 

  3. Li XJ, Du DF, Zhang Y, Xing W, Xue QZ, Yan ZF (2017) Layered double hydroxides toward high-performance supercapacitors. J Mater Chem A 5:15460–15485

    CAS  Google Scholar 

  4. Konishi H, Kucuk AC, Minato T, Ogumi TZ (2019) Improved electrochemical performances in a bismuth fluoride electrode prepared using a high energy ball mill with carbon for fluoride shuttle batteries. J Electroanalytical Chem 839:173–176

    CAS  Google Scholar 

  5. Chen WS, Yu HP, Lee SY, Wei T, Li J, Fan ZJ (2018) Nanocellulose: a promising nanomaterial for advanced electrochemical energy storage. Chem Soc Rev 47:2837–2872

    CAS  Google Scholar 

  6. Qua QT, Shi Y, Tian S, Chen YH, Wu Y, Holze PR (2009) A new cheap asymmetric aqueous supercapacitor: Activated carbon//NaMnO2. J Power Sources 194:1222–1225

    Google Scholar 

  7. Miller JR, Simon P (2008) Electrochemical capacitors for energy management. Science 321(5889):651–652

    CAS  Google Scholar 

  8. Conway BE, Birss V, Wojtowicz J (1997) The role and utilization of pseudocapacitance for energy storage by supercapacitors. J Power Sources 66:1–14

    CAS  Google Scholar 

  9. Zhang QB, Liu ZC, Zhao BT, Cheng Y, Zhang L, Wu HH, Wang MS, Dai SG, Zhang KL, Ding D, Wu YP, Liu ML (2019) Design and understanding of dendritic mixed-metal hydroxide nanosheets@N-doped carbon nanotube array electrode for high-performance asymmetric supercapacitors. Energy Storage Mater 16:632–645

    Google Scholar 

  10. Zhang QC, Xu WW, Sun J, Pan ZH, Zhao JX, Wang XN, Zhang J, Man P, Guo JB, Zhou ZY, He B, Zhang ZX, Li QW, Zhang YG, Xu L, Yao YG (2017) Constructing ultrahigh-capacity zinc-nickel-cobalt oxide@Ni(OH)2 core-shell nanowire arrays for high-performance coaxial fiber-shaped asymmetric supercapacitors. Nano Lett 17(12):7552–7560

    CAS  Google Scholar 

  11. Liu J, Jiang J, Cheng C, Li H, Zhang J, Fan HJ (2011) Co3O4 nanowire@MnO2 Ultra thin nanosheet core/shell arrays: a new class of high-performance pseudo-capacitive materials. Adv Mater 23:2076–2081

    CAS  Google Scholar 

  12. Zhao YH, He XY, Chen RR, Liu Q, Liu JY, Yu J, Li JQ, Zhang HS, Dong HX, Zhang ML, Wang J (2018) A flexible all-solid-state asymmetric supercapacitors based on hierarchical carbon cloth@CoMoO4@NiCo layered double hydroxide core-shell heterostructures. Chem Eng J 352:29–38

    CAS  Google Scholar 

  13. Ai YF, Geng XW, Lou Z, Wang ZM, Shen GZ (2015) Rational synthesis of branched CoMoO4@CoNiO2 core/shell nanowire arrays for all-solid-state supercapacitors with improved performance. ACS Appl Mater Interfaces 7:24204–24211

    CAS  Google Scholar 

  14. Jing W, Zhang LP, Liu XS, Zhang X, Tian YL, Liu XX, Zhao JP, Li Y (2017) Assembly of flexible CoMoO4@NiMoO4•xH2O and Fe2O3 electrodes for solid-state asymmetric supercapacitors. Sci Rep 7:41088

    Google Scholar 

  15. Cai D, Wang DD, Liu B, Wang YR, Liu Y, Wang LL, Li H, Huang H, Li QH, Wang TH (2013) Comparison of the electrochemical performance of NiMoO4 nanorods and hierarchical nanospheres for supercapacitor applications. ACS Appl Mater Interfaces 5:12905–12910

    CAS  Google Scholar 

  16. Ghosh D, Giri S, Das CK (2013) Synthesis, characterization and electrochemical performance of graphene decorated with 1D NiMoO4·nH2O nanorods. Nanoscale 5:10428–10437

    CAS  Google Scholar 

  17. Xiao W, Chen JS, Li CM, Xu R, Lou XW (2010) Synthesis, characterization, and lithium storage capability of AMoO4 (A= Ni, Co) nanorods. Chem Mater 22:746–754

    CAS  Google Scholar 

  18. Liu MC, Kong LB, Lu C, Ma XJ, Li XM, Luo YC, Kang L (2013) Design and synthesis of CoMoO4–NiMoO4• x H2O bundles with improved electrochemical properties for supercapacitors. J Mater Chem A 1:1380–1387

    CAS  Google Scholar 

  19. Zhang Z, Liu Y, Huang Z, Ren L, Qi X, Wei X, Zhong J (2015) Facile hydrothermal synthesis of NiMoO4@CoMoO4 hierarchical nanospheres for supercapacitor applications. Phys Chem Chem Phys 17:20795–20804

    CAS  Google Scholar 

  20. Genovese M, Wu H, Virya A, Li J, Shen PZ, Lian K (2018) Ultrathin all solid-state supercapacitor devices based on chitosan activated carbon electrodes and polymer electrolytes. Electrochim Acta 273:392–401

    CAS  Google Scholar 

  21. Ramkumar R, Minakshi M (2015) Fabrication of ultrathin CoMoO4 nanosheets modified with chitosan and their improved performance in energy storage device. Dalton Trans 44:6158–6168

    CAS  Google Scholar 

  22. Yang Q, Lin SY (2016) Rationally designed nanosheet-based CoMoO4–NiMoO4 nanotubes for high-performance electrochemical electrodes. RSC Adv 6:10520–10526

    CAS  Google Scholar 

  23. Mandal M, Ghosh D, Giri S, Shakirb I, Das CK (2014) Polyaniline-wrapped 1D CoMoO4· 0.75 H2O nanorods as electrode materials for supercapacitor energy storage applications. RSC Adv 4:30832–30839

    CAS  Google Scholar 

  24. Li M, Xu S, Cherry C (2015) Hierarchical 3-dimensional CoMoO4 nanoflakes on macroporous electrically conductive network with superior electrochemical performance. J Mater Chem A 3:13776–13785

    CAS  Google Scholar 

  25. Yin Z, Zhang S, Chen Y, Gao P, Zhu C, Yang P, Qi L (2015) Hierarchical nanosheet-based NiMoO4 nanotubes: synthesis and high supercapacitor performance. J Mater Chem A 3:739–745

    CAS  Google Scholar 

  26. Liu P, Deng Y, Zhang Q, Hu Z, Xu Z, Liu Y, Ai Z (2015) Facile synthesis and characterization of high-performance NiMoO4·xH2O nanorods electrode material for supercapacitors. Ionics 21:2797–2804

    CAS  Google Scholar 

  27. Huang KJ, Wang L, Zhang JZ, Wang LL, Mo YP (2014) One-step preparation of layered molybdenum disulfide/multi-walled carbon nanotube composites for enhanced performance supercapacitor. Energy 67:234–240

    CAS  Google Scholar 

  28. Wang Z, Hong P, Peng S, Zou T, Yang Y, Xing XX, Wang ZZ, Zhao RJ, Yan ZY, Wang YD (2019) Co(OH)2@FeCo2O4 as electrode material for high performance faradaic supercapacitor application. Electrochim Acta 299:312–319

    CAS  Google Scholar 

  29. Sun G, Li B, Ran J, Shen X, Tong H (2015) Three-dimensional hierarchical porous carbon/graphene composites derived from graphene oxide-chitosan hydrogels for high performance supercapacitors. Electrochim Acta 171:13–22

    CAS  Google Scholar 

  30. Li B, Gu P, Feng Y, Zhang G, Huang K, Xue H, Pang H (2017) Ultrathin nickel-cobalt phosphate 2D nanosheets for electrochemical energy storage under aqueous/solid-state electrolyte. Adv Funct Mater 27:1605784

    Google Scholar 

  31. Rakhi RB, Chen W, Cha D, Alshareef HN (2012) Substrate dependent self-organization of mesoporous cobalt oxide nanowires with remarkable pseudocapacitance. Nano Lett 12(5):2559–2567

    CAS  Google Scholar 

  32. Jiao Y, Liu Y, Yin BS, Zhang SW, Qu FY, Wu X (2014) Hybrid α-Fe2O3@ NiO heterostructures for flexible and high performance supercapacitor electrodes and visible light driven photocatalysts. Nano Energy 10:90–98

    CAS  Google Scholar 

  33. Wang KP, Teng HS (2007) Structural feature and double-layer capacitive performance of porous carbon powder derived from polyacrylonitrile-based carbon fiber. J Electrochem Soc 154(11):993–A998

    Google Scholar 

  34. Xu MW, Kong LB, Zhou WJ, Li HL (2007) Hydrothermal synthesis and pseudocapacitance properties of α-MnO2 hollow spheres and hollow urchins. J Phys Chem C 111(51):19141–19147

    CAS  Google Scholar 

  35. Fan ZJ, Yan J, Wei T, Zhi LJ, Ning GQ, Li TY, Wei F (2011) Asymmetric supercapacitors based on graphene/MnO2 and activated carbon nanofiber electrodes with high power and energy density. Adv Funct Mater 21(12):2366–2375

    CAS  Google Scholar 

  36. Vennekoetter JB, Sengpiel R, Wessling M (2019) Beyond the catalyst: how electrode and reactor design determine the product spectrum during electrochemical CO2 reduction. Chem Eng J 364:89–101

    CAS  Google Scholar 

  37. He Y, Chen W, Zhou J, Li X, Tang P, Zhang Z, Xie E (2013) Constructed uninterrupted charge-transfer pathways in three-dimensional micro/nanointerconnected carbon-based electrodes for high energy-density ultralight flexible supercapacitors. ACS Appl Mater interfaces 6:210–218

    Google Scholar 

  38. Tang P, Han L, Zhang L (2014) Facile synthesis of graphite/PEDOT/MnO2 composites on commercial supercapacitor separator membranes as flexible and high-performance supercapacitor electrodes. ACS Appl Mater Interfaces 6:10506–10515

    CAS  Google Scholar 

  39. Yu P, Li Y, Yu X, Zhao X, Wu L, Zhang Q (2013) Polyaniline nanowire arrays aligned on nitrogen-doped carbon fabric for high-performance flexible supercapacitors. Langmuir 29:12051–12058

    CAS  Google Scholar 

  40. Yuan CZ, Li JY, Hou LR, Lin JD, Pang G, Zhang LH, Lian L, Zhang XG (2013) Template-engaged synthesis of uniform mesoporous hollow NiCo2O4 sub-microspheres towards high-performance electrochemical capacitors. RSC Adv 3:18573–18578

    CAS  Google Scholar 

  41. Liu XY, Shi SJ, Xiong QQ, Li L, Zhang YJ, Tang H, Gu CD, Wang XL, Tu JP (2013) Hierarchical NiCo2O4@NiCo2O4 core/shell nanoflake arrays as high-performance supercapacitor materials. ACS Appl Mater Interfaces 5:8790–8795

    CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by National Natural Science Foundation of China (no. 51010005, 52502057), Specialized Research Fund for the Doctoral Program of Higher Education (2016M601427), Young Scientists of Harbin University of Commerce, No. 17XN018 and Scientific research project No. 2019DS084.

Authors’ contributions

JW and HX designed this experiment and JW wrote the manuscript. JW and YC carried out the electrochemical experiments and other analysis. ZL, WC and SW analyzed the experimental results and supervised the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Wang.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, J., Cheng, Y., Liu, Z. et al. Fabrication of hybrid CoMoO4–NiMoO4 nanosheets by chitosan hydrogel assisted calcinations method with high electrochemical performance. J Sol-Gel Sci Technol 93, 131–141 (2020). https://doi.org/10.1007/s10971-019-05156-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05156-3

Keywords

Navigation