Skip to main content
Log in

Aqueous sol–gel processing of precursors and synthesis of aluminum oxynitride powder therefrom

  • Original Paper: Industrial and technological applications of sol–gel and hybrid materials
  • Published:
Journal of Sol-Gel Science and Technology Aims and scope Submit manuscript

Abstract

For the first time, aluminum oxynitride (ALON) powders were synthesized using the precursors processed through aqueous sol–gel procedures. Appropriate quantities of aluminum nitride (AlN) powder and aqueous boehmite sol were mixed to obtain molecular stoichiometry of AlON. However, during the course of process, AlN powders reacted with the aqueous boehmite sol and disintegrated into its hydrated compounds. Such reactions altered the molecular stoichiometry between boehmite and AlN which was initially formulated for the eventual formation of AlON. Extensive investigations were carried out to analyse the behavior of AlN during the sol–gel processing. Hydrolysis of AlN in the aqueous sol–gel medium was circumvented by subjecting AlN to a surface modification process. The homogeneously dispersed boehmite sol and AlN mixture was further gelled, dried, and heat treated at temperatures between 1600 and 1850 °C for the formation of AlON powder. AlON phase formation was confirmed through XRD investigations, and its physical and microstructural properties were also evaluated through FESEM and TEM analyses. AlON powder with an average particle size of 490 nm was successfully synthesized in this study. This process is suitable for producing AlON powder in bulk quantities, and it can be used readily for further processes such as shaping and sintering to produce various optical products based on AlON.

Highlights

  • For the first time, Aluminum Oxynitride (AlON) powders were synthesized using aqueous sol–gel processing.

  • AlN powders and aqueous boehmite sol were used as precursors.

  • Surface modification treatement was carried out for AlN powder prior to its addition with the boehmite sol to retain its phase intact during the processing.

  • Single-phase AlON powders with average particle size of 490 nm was successfully synthesized.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Wahl JM, Hartnett TM, Goldman LM, Twedt R, Warner C (2005) Recent advances on AlON optical ceramic; in window and dome technologies and materials IX, Vol. 5786, Proceedings of SPIE, Edited by R. W. Tustiston. SPIE, Bellingham, WA, USA. 71–82

  2. Wei GC (2005) J Phys D 38:3057–3065

    Article  CAS  Google Scholar 

  3. McCauley J, Corbin ND (1983) In: Riley, F.L. (ed.) Prog Nit Creram, Martinus Nijhoff Publishers, Boston/The Hague/DordrechtiLancaster 65:111–118

  4. Gentilman RL, Maguire EA, Dolhert LE (1988) US Patent No 4720362, Jan 19

  5. Fukuyama H, Nakao W, Susa M, Nagata K (1999) J Am Ceram Soc 82:1381–1387

    Article  CAS  Google Scholar 

  6. Cheng JP, Agarwal D, Roy R (1999) J Mater Sci Lett 18:1989–1990

    Article  CAS  Google Scholar 

  7. Kim YW, Park HC, Lee YB, Oh KD, Stevens R (2001) J Eur Ceram Soc 21:2383–2391

    Article  CAS  Google Scholar 

  8. Xidong W, Fuming W, Wenchao L (2003) Mater Sci Eng A 342:245–250

    Article  Google Scholar 

  9. Patel PJ, Gilde G, McCauley JW (2006) US Patent No 7045091 B1, May 16

  10. McCauley JW, Corbin ND (1979) J Am Ceram Soc 62:476–479

    Article  CAS  Google Scholar 

  11. Gentilman RL, Maguire EA, Dolhert LE (1985) US Patent No 4520116, May 28

  12. Labbe JC, Jeanne A, Roult G (1992) Ceram Int 18:81–84

    Article  CAS  Google Scholar 

  13. Rafaniello W, Cutler B (1981) J Am Ceram Soc 10:C-128

    Google Scholar 

  14. Jin X, Gao L, Sun J, Liu Y, Gui L (2012) J Am Ceram Soc 95:2801–2807

    Article  CAS  Google Scholar 

  15. Ruan G, Xu H, Zhang Z, Yin M, Xu G, Zhan X (2013) J Am Ceram Soc 96:1706–1708

    Article  CAS  Google Scholar 

  16. Xie X, Wang Y, Qi J, Wang S, Feng Z, Hou G, Liu W, Zhang W, Xu Q, Lu T (2016) J Am Ceram Soc 99:2601–2606

    Article  CAS  Google Scholar 

  17. Feng Z, Qi J, Huang X, Guo X, Yu Y, Cao X, Wang Y, Wu D, Meng C, Lu T (2019) J Am Ceram Soc 102:2377–2389

    CAS  Google Scholar 

  18. Wang Y, Li Q, Huang S, Cheng X, Hou P, Wang Y, Chen G, Yi S (2018) Ceram Inter 44:471–476

    Article  CAS  Google Scholar 

  19. Sabaghi V, Davar F, Taherian MH (2019) Ceram Inter 45:3350–3358

    Article  CAS  Google Scholar 

  20. Zientara D, Bucko MM, Lis J (2007) J Eur Ceram Soc 27:775–779

    Article  CAS  Google Scholar 

  21. Zhang N, Liang B, Wang XY, Kan HM, Zhu KW, Zhao XJ (2011) Mater Sci Eng A 528:6259–6262

    Article  CAS  Google Scholar 

  22. Zhou J, Liao Z, Qi J, Pang W, Wen Y (2008) Key Eng Mater 368:441–443

    Article  Google Scholar 

  23. Corbin ND (1989) J Eur Ceram Soc 5:143–154. 1989

    Article  CAS  Google Scholar 

  24. Yawei L, Nan L, Runzhang Y (1997) J Mater Sci Lett 16:185–186

    Article  Google Scholar 

  25. Galakhov AB, Zelenskii VA, Vinogradov LV, Antipov VI, Alymov MI (2012) Ref Ind Ceram 53:269–271

    Article  CAS  Google Scholar 

  26. Loghman-Estarki MR, Davar F, Ghorbani S, Zendehdel M, Taherian MH (2016) Ceram Inter 42:16861–16866

    Article  CAS  Google Scholar 

  27. Miller L, Kaplan WD (2008) J Am Ceram Soc 91:1693–1696

    Article  CAS  Google Scholar 

  28. Miller L, Kaplan WD (2008) Int J Appl Ceram Technol 5:641–648

    Article  CAS  Google Scholar 

  29. Senthil Kumar R, Rajeswari K, Praveen B, Hareesh US, Johnson R (2010) J Am Ceram Soc 93:429–435

    Article  Google Scholar 

  30. Senthil Kumar R, Hareesh US, Ramavath P, Johnson R (2011) Ceram Int 37:2583–2590

    Article  Google Scholar 

  31. Bandyopadhyay S, Rixecker G, Aldinger F, Pal S, Mukherjee K, Maiti H (2002) J Am Ceram Soc 85:1010–1012

    Article  CAS  Google Scholar 

  32. Corbin ND (1982) M.S. Thesis, Department of Materials Science and Engineering, Massachusetts Institute of Technology. The influence of Carbon, Nitrogen and Argon on Aluminum Oxynitride Spinel Format, Cambridge, MA

  33. Senthil Kumar R, Johnson R (2016) J Am Ceram Soc 99:3220–3225

    Article  Google Scholar 

  34. Nyqist RA, Kagel RO (1971) Handbook of infrared and Raman spectra of inorganic compounds and organic salts. Academic Press, New York, NY, p 495

    Google Scholar 

  35. Ponthieu E, Grange P, Delmon B, Lonnoy L, Leclercq L, Bechara R, Grirnblot J (1991) J Eur Ceram Soc 8:233–241

    Article  CAS  Google Scholar 

  36. Lee DH, Condrate Sr RA (1995) Mater Lett 23:241–246

    Article  CAS  Google Scholar 

  37. Colomban Ph (1989) J Mater Sci 24:3002–3010

    Article  CAS  Google Scholar 

  38. Oliveira M, Olhero S, Rocha J, Ferreira JMF (2003) J Col Inter Sci 261:456–463

    Article  CAS  Google Scholar 

  39. Bakas M, Chu H (2010) Pressureless reaction sintering of AlON using aluminum orthophosphate as a transient liquid phase. In: JJ. Swab, D. Singh, J. Salem (Eds), Advances in Ceramic Armor V, The American Ceramic Society, John Wiley and Sons, Inc., Hoboken, New Jersey

  40. Hartnett TM, Bernstein SD, Maguire EA, Tustison RW (1998) Infra Phys Technol 39:203–211

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rajendran Senthil Kumar.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Senthil Kumar, R., Erkulla, S., Khanra, A.K. et al. Aqueous sol–gel processing of precursors and synthesis of aluminum oxynitride powder therefrom. J Sol-Gel Sci Technol 93, 100–110 (2020). https://doi.org/10.1007/s10971-019-05163-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10971-019-05163-4

Keywords

Navigation