Skip to main content
Log in

Oxygen Deficient TiO2−x with Dual Reaction Sites for Activation of H2O2 to Degrade Organic Pollutants

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

The present study reports the development of a novel defective TiO2−x catalyst with oxygen vacancy (OV) which carries dual types of reaction sites for H2O2 activation. The performance of this catalyst on the degradation of organic pollutants was evaluated using organic dyes [such as methyl orange, methylene blue, and rhodamine B (RhB)] as model pollutants. The defects in TiO2−x exhibited a wide pH working window (pH 2–9) for RhB degradation which is wider than that of traditional Fenton systems. Furthermore, this catalyst retained its high catalytic activity even after five cycles. It was confirmed that the surface OV and Ti3+ of TiO2−x served as the active sites for H2O2 activation while the oxygen vacancy promoted adsorption of the organic pollutants, thus enhancing the Fenton-like catalytic performance. The results are applicable to Fenton catalysts via surface engineering and can stimulate new opportunities for the optimization of defect-type Fenton catalysts.

Graphic Abstract

This study, reports the defect of TiO2−x oxygen vacancy (OV) catalyst with oxygen vacancy (OV) which carries dual types of reaction sites for H2O2 activation. The performance of this catalyst on the degradation of organic pollutants was evaluated using organic dyes [such as methyl orange, methylene blue, and rhodamine B (RhB)] as model pollutants. The defects in TiO2−x exhibited a wide pH working window (pH 2–9) for RhB degradation which is wider than that of traditional Fenton systems. Figure shows the schematic of the reaction mechanism. First, H2O2 adsorbs on the TiO2−x surfaces; consequently, the OV and Ti3+ serve as the “Fenton-catalytic” center for H2O2 activation to produce ·OH radicals on the TiO2−x surface. Meanwhile, OV on TiO2−x surface is beneficial for the adsorbed organic pollutants. Because of the generated hydroxyl radical on the TiO2−x surface is very close to the adsorbed pollutant. As a result, the rapid reaction of in situ generated hydroxyl radical with the adsorbed organic pollutants on the TiO2−x surface giving rise to excellent Fenton-like catalytic performance. The proposed overall Fenton-like reaction mechanism on oxygen deficient TiO2−x catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

References

  1. Kwan WP, Voelker BM (2003) Environ Sci Technol 37(6):1150

    Article  CAS  Google Scholar 

  2. Pouran SR, Aziz ARA, Wan MAWD (2015) J Ind Eng Chem 21(1):53–69

    Article  Google Scholar 

  3. Klavarioti M, Mantzavinos D, Kassinos D (2009) Environ Int 35(2):0–417

    Article  CAS  Google Scholar 

  4. Bobu M, Yediler A, Siminiceanu I (2013) Environ Lett 48(3):251–262

    CAS  Google Scholar 

  5. Shokri A, Mahanpoor K, Soodbar D (2016) Desalin Water Treat 57(35):16473–16482

    Article  CAS  Google Scholar 

  6. Wang Q, Tian S, Ning P (2014) Ind Eng Chem Res 53(15):6334–6340

    Article  CAS  Google Scholar 

  7. Bokare AD, Choi W (2014) J Hazard Mater 275:121–135

    Article  CAS  Google Scholar 

  8. Parida KM, Pradhan AC (2010) Ind Eng Chem Res 49(18):8310–8318

    Article  CAS  Google Scholar 

  9. Kishimoto N, Kitamura T, Kato M et al (2013) Water Res 47(5):1919–1927

    Article  CAS  Google Scholar 

  10. Costa RCC, Moura FCC, Ardisson JD et al (2008) Appl Catal B 83(1–2):131–139

    Article  CAS  Google Scholar 

  11. Li J, Ai Z, Zhang L (2009) J Hazard Mater 164(1):18–25

    Article  CAS  Google Scholar 

  12. Zhang S, Gao H, Huang Y et al (2018) Environ Sci 5(5):1179–1190

    CAS  Google Scholar 

  13. Liang H, Zhou S, Chen Y et al (2015) J Taiwan Inst Chem Eng 49:105–112

    Article  CAS  Google Scholar 

  14. Hendriksen BLM, Ackermann MD, Van Rijn R et al (2010) Nat Chem 2(9):730

    Article  CAS  Google Scholar 

  15. Martinez U, Vilhelmsen LB, Kristoffersen HH et al (2011) Phys Rev B 84(20):205434

    Article  Google Scholar 

  16. Li H, Shang J, Zhu H et al (2016) ACS Catal 6(12):8276–8285

    Article  CAS  Google Scholar 

  17. Zhuang J, Dai W, Tian Q et al (2010) Langmuir 26(12):9686–9694

    Article  CAS  Google Scholar 

  18. Wang XH, Li JG, Kamiyama H et al (2006) J Phys Chem B 110(13):6804–6809

    Article  CAS  Google Scholar 

  19. Li H, Shang J, Yang Z et al (2017) Environ Sci Technol 51(10):5685–5694

    Article  CAS  Google Scholar 

  20. Jin H, Tian X, Nie Y et al (2017) Environ Sci Technol 51(21):12699–12706

    Article  CAS  Google Scholar 

  21. An X, Tang Q, Lan H et al (2019) Appl Catal B 244:407–413

    Article  CAS  Google Scholar 

  22. Lei F, Sun Y, Liu K et al (2014) J Am Chem Soc 136(19):6826–6829

    Article  CAS  Google Scholar 

  23. Zhang N, Li X, Ye H et al (2016) J Am Chem Soc 138(28):8928–8935

    Article  CAS  Google Scholar 

  24. Pan XY, Yang MQ, Fu XZ, Zhang N, Xu YJ (2013) Nanoscale 5:3601–3614

    Article  CAS  Google Scholar 

  25. Wang GM, Ling YC, Li Y (2012) Nanoscale 4:6682–6691

    Article  CAS  Google Scholar 

  26. Nowotny J (2008) Energy Environ Sci 1:565–572

    Article  CAS  Google Scholar 

  27. Pei DN, Gong L, Zhang AY et al (2015) Nat Commun 6:8696

    Article  CAS  Google Scholar 

  28. Zhou WY, Liu JY, Song JY et al (2017) Anal Chem 89(6):3386–3394

    Article  CAS  Google Scholar 

  29. Liu G, Yang HG, Wang X et al (2009) J Phys Chem C 113(52):21784–21788

    Article  CAS  Google Scholar 

  30. He D, Ma J, Collins RN et al (2016) Environ Sci Technol 50(7):3820–3828

    Article  CAS  Google Scholar 

  31. Xia T, Zhang Y, Murowchick J et al (2014) Catal Today 225:2–9

    Article  CAS  Google Scholar 

  32. Yu J, Zhao X, Du J et al (2000) J Sol-Gel Sci Technol 17(2):163–171

    Article  CAS  Google Scholar 

  33. Lee HY, Wu BK, Chern MY (2014) Electron Mater Lett 10(1):51–55

    Article  CAS  Google Scholar 

  34. Hou X, Huang X, Jia F et al (2017) Environ Sci Technol 51(9):5118–5126

    Article  CAS  Google Scholar 

  35. Cahill AE, Taube H (1952) J Am Chem Soc 74(9):2312–2318

    Article  CAS  Google Scholar 

  36. Orhanovic M, Earley JE (1975) Inorg Chem 14(7):1478–1481

    Article  CAS  Google Scholar 

  37. Hao Y, Lai Q, Xu Z et al (2005) Solid State Ionics 176(13–14):1201–1206

    Article  CAS  Google Scholar 

  38. Chen J, Li YF, Sit P et al (2013) J Am Chem Soc 135(50):18774–18777

    Article  CAS  Google Scholar 

  39. Song Z, Wang B, Yu J et al (2017) Appl Surf Sci 413:292–301

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors are thankful for the financial support from the National Natural Science Foundation of China (21273050, 21573048, 21873022, 51574092).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yan Mi or Zai-yin Huang.

Ethics declarations

Conflict of interest

The authors declare no competing financial interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 1405 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Qiu, Jy., Chen, Jh., Xiao, By. et al. Oxygen Deficient TiO2−x with Dual Reaction Sites for Activation of H2O2 to Degrade Organic Pollutants. Catal Lett 150, 222–233 (2020). https://doi.org/10.1007/s10562-019-02920-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02920-6

Keywords

Navigation