Skip to main content
Log in

Metal Cocatalyst Directing Photocatalytic Acetonylation of Toluene via Dehydrogenative Cross-Coupling with Acetone

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

A heterogeneous metal-loaded titanium oxide photocatalyst provided an efficient route to bring out direct dehydrogenative cross-coupling between toluene and acetone without consuming any additional oxidizing agent. The nature of the metal nanoparticle cocatalyst deposited on TiO2 photocatalyst dictated the product selectivity for the cross-coupling. Pd nanoparticles on TiO2 photocatalyst allowed a C–C bond formation between the aromatic ring of toluene and acetone to give 1-(o-tolyl)propan-2-one (1a1) with high regioselectivity, while Pt nanoparticles on TiO2 photocatalyst promoted the cross-coupling between the methyl group of toluene and acetone to give 4-phenylbutan-2-one (1b) as the acetonylated product. These results demonstrated that the selection of the metal cocatalyst on TiO2 photocatalyst could determine which C–H bonds in toluene, aromatic or aliphatic, can react with acetone. Two kinds of reaction mechanisms were proposed for the photocatalytic dehydrogenative cross-coupling reaction, depending on the property of the metal nanoparticles, i.e., only Pd nanoparticles can catalyze the reaction between aromatic ring and the acetonyl radical species.

Graphic Abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Scheme 1
Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  1. Fujishima A, Honda K (1972) Electrochemical photolysis of water at a semiconductor electrode. Nature 238:37–38. https://doi.org/10.1038/238038a0

    Article  CAS  PubMed  Google Scholar 

  2. Abe R, Sayama K, Domen K, Arakawa H (2001) A new type of water splitting system composed of two different TiO2 photocatalysts (anatase, rutile) and a IO3−/I shuttle redox mediator. Chem Phys Lett 344:339–344. https://doi.org/10.1016/S0009-2614(01)00790-4

    Article  CAS  Google Scholar 

  3. Ni M, Leung MKH, Leung DYC, Sumathy K (2007) A review and recent developments in photocatalytic water-splitting using TiO2 for hydrogen production. Renew Sustain Energy Rev 11:401–425. https://doi.org/10.1016/j.rser.2005.01.009

    Article  CAS  Google Scholar 

  4. Yanghe F, Dengrong S, Yongjuan C et al (2012) An amine-functionalized titanium metal-organic framework photocatalyst with visible-light-induced activity for CO2 reduction. Angew Chem Int Ed 51:3364–3367. https://doi.org/10.1002/anie.201108357

    Article  CAS  Google Scholar 

  5. Mori K, Yamashita H, Anpo M (2012) Photocatalytic reduction of CO2 with H2O on various titanium oxide photocatalysts. RSC Adv 2:3165–3172. https://doi.org/10.1039/C2RA01332K

    Article  CAS  Google Scholar 

  6. Low J, Cheng B, Yu J (2017) Surface modification and enhanced photocatalytic CO2 reduction performance of TiO2: a review. Appl Surf Sci 392:658–686. https://doi.org/10.1016/j.apsusc.2016.09.093

    Article  CAS  Google Scholar 

  7. Fujishima A, Zhang X, Tryk DA (2007) Heterogeneous photocatalysis: from water photolysis to applications in environmental cleanup. Int J Hydrog Energy 32:2664–2672. https://doi.org/10.1016/j.ijhydene.2006.09.009

    Article  CAS  Google Scholar 

  8. Di Paola A, García-López E, Marcì G, Palmisano L (2012) A survey of photocatalytic materials for environmental remediation. J Hazard Mater 211–212:3–29. https://doi.org/10.1016/j.jhazmat.2011.11.050

    Article  CAS  PubMed  Google Scholar 

  9. Fagnoni M, Dondi D, Ravelli D, Albini A (2007) Photocatalysis for the formation of the C–C bond. Chem Rev 107:2725–2756. https://doi.org/10.1021/cr068352x

    Article  CAS  PubMed  Google Scholar 

  10. Ma D, Liu A, Li S et al (2018) TiO2 photocatalysis for C–C bond formation. Catal Sci Technol 8:2030–2045. https://doi.org/10.1039/C7CY01458A

    Article  CAS  Google Scholar 

  11. Li R, Kobayashi H, Guo J, Fan J (2011) Visible-light induced high-yielding benzyl alcohol-to-benzaldehyde transformation over mesoporous crystalline TiO2: a self-adjustable photo-oxidation system with controllable hole-generation. J Phys Chem C 115:23408–23416. https://doi.org/10.1021/jp207259u

    Article  CAS  Google Scholar 

  12. Xianjun L, Hongwei J, Chuncheng C et al (2011) Selective formation of imines by aerobic photocatalytic oxidation of amines on TiO2. Angew Chem Int Ed 50:3934–3937. https://doi.org/10.1002/anie.201007056

    Article  CAS  Google Scholar 

  13. Yamamoto A, Ohara T, Yoshida H (2018) Visible-light-induced photocatalytic benzene/cyclohexane cross-coupling utilizing a ligand-to-metal charge transfer benzene complex adsorbed on titanium oxides. Catal Sci Technol 8:2046–2050. https://doi.org/10.1039/c7cy02566a

    Article  CAS  Google Scholar 

  14. Ikeda S, Ikoma Y, Kobayashi H et al (2007) Encapsulation of titanium(iv) oxide particles in hollow silica for size-selective photocatalytic reactions. Chem Commun 3753–3755. https://doi.org/10.1039/B704468B

  15. Yurdakal S, Palmisano G, Loddo V et al (2008) Nanostructured rutile TiO2 for selective photocatalytic oxidation of aromatic alcohols to aldehydes in water. J Am Chem Soc 130:1568–1569. https://doi.org/10.1021/ja709989e

    Article  CAS  PubMed  Google Scholar 

  16. Sofianou M-V, Psycharis V, Boukos N et al (2013) Tuning the photocatalytic selectivity of TiO2 anatase nanoplates by altering the exposed crystal facets content. Appl Catal B 142–143:761–768. https://doi.org/10.1016/j.apcatb.2013.06.009

    Article  CAS  Google Scholar 

  17. Selvam K, Swaminathan M (2011) Cost effective one-pot photocatalytic synthesis of quinaldines from nitroarenes by silver loaded TiO2. J Mol Catal A 351:52–61. https://doi.org/10.1016/j.molcata.2011.09.014

    Article  CAS  Google Scholar 

  18. Zheng Z, Huang B, Qin X et al (2011) Facile in situ synthesis of visible-light plasmonic photocatalysts M@TiO2 (M = Au, Pt, Ag) and evaluation of their photocatalytic oxidation of benzene to phenol. J Mater Chem 21:9079–9087. https://doi.org/10.1039/C1JM10983A

    Article  CAS  Google Scholar 

  19. Alfè M, Spasiano D, Gargiulo V et al (2014) TiO2/graphene-like photocatalysts for selective oxidation of 3-pyridine-methanol to vitamin B3 under UV/solar simulated radiation in aqueous solution at room conditions: the effect of morphology on catalyst performances. Appl Catal A 487:91–99. https://doi.org/10.1016/j.apcata.2014.09.002

    Article  CAS  Google Scholar 

  20. Kou J, Lu C, Wang J et al (2017) Selectivity enhancement in heterogeneous photocatalytic transformations. Chem Rev 117:1445–1514. https://doi.org/10.1021/acs.chemrev.6b00396

    Article  CAS  PubMed  Google Scholar 

  21. Tanaka A, Fuku K, Nishi T et al (2013) Functionalization of Au/TiO2 plasmonic photocatalysts with pd by formation of a core–shell structure for effective dechlorination of chlorobenzene under irradiation of visible light. J Phys Chem C 117:16983–16989. https://doi.org/10.1021/jp403855p

    Article  CAS  Google Scholar 

  22. Zou X, Tao Z, Asefa T (2013) Semiconductor and plasmonic photocatalysis for selective organic transformations. Curr Org Chem 17:1274–1287. https://doi.org/10.2174/1385272811317120004

    Article  CAS  Google Scholar 

  23. Wang F, Li C, Chen H et al (2013) Nanogold plasmonic photocatalysis for organic synthesis and clean energy conversion. Chem Soc Rev 43:7188–7216. https://doi.org/10.1021/ja310501y

    Article  CAS  Google Scholar 

  24. Wu X, Jaatinen E, Sarina S, Zhu HY (2017) Direct photocatalysis of supported metal nanostructures for organic synthesis. J Phys D 50:283001. https://doi.org/10.1088/1361-6463/aa73f6

    Article  CAS  Google Scholar 

  25. Allen A, Cantrell TS (1989) Synthetic reductions in clandestine amphetamine and methamphetamine laboratories: a review. Forensic Sci Int 42:183–199. https://doi.org/10.1016/0379-0738(89)90086-8

    Article  CAS  Google Scholar 

  26. Newman MS, Booth WT (1945) The preparation of ketones from grignard reagents. J Am Chem Soc 67:154. https://doi.org/10.1021/ja01217a503

    Article  CAS  Google Scholar 

  27. Shatzmiller S, Lidor R, Shalon E, Bahar E (1984) A novel route to arylacetones via a masked [small alpha]-acylcarbonium intermediate. J Chem Soc Chem Commun 795–796. https://doi.org/10.1039/C39840000795

    Article  Google Scholar 

  28. Yinghuai Z, Bahnmueller S, Hosmane NS, Maguire JA (2003) An effective system to synthesize arylacetones. Substrate-ionic liquid-ultrasonic irradiation. Chem Lett 32:730–731. https://doi.org/10.1246/cl.2003.730

    Article  Google Scholar 

  29. Wada E, Takeuchi T, Fujimura Y et al (2017) Direct cyanomethylation of aliphatic and aromatic hydrocarbons with acetonitrile over a metal loaded titanium oxide photocatalyst. Catal Sci Technol 7:2457–2466. https://doi.org/10.1039/c7cy00365j

    Article  CAS  Google Scholar 

  30. Wada E, Tyagi A, Yamamoto A, Yoshida H (2017) Dehydrogenative lactonization of diols with a platinum-loaded titanium oxide photocatalyst. Photochem Photobiol Sci 16:1744–1748. https://doi.org/10.1039/C7PP00258K

    Article  CAS  PubMed  Google Scholar 

  31. Tyagi A, Yamamoto A, Kato T, Yoshida H (2017) Bifunctional property of Pt nanoparticles deposited on TiO2 for the photocatalytic sp 3 C–sp 3 C cross-coupling reactions between THF and alkanes. Catal Sci Technol 7:2616–2623. https://doi.org/10.1039/C7CY00535K

    Article  CAS  Google Scholar 

  32. Naniwa S, Tyagi A, Yamamoto A, Yoshida H (2018) Visible-light photoexcitation of pyridine surface complex, leading to selective dehydrogenative cross-coupling with cyclohexane. Phys Chem Chem Phys 20:28375–28381. https://doi.org/10.1039/c8cp04292f

    Article  CAS  PubMed  Google Scholar 

  33. Yoshida H, Fujimura Y, Yuzawa H et al (2013) A heterogeneous palladium catalyst hybridised with a titanium dioxide photocatalyst for direct C–C bond formation between an aromatic ring and acetonitrile. Chem Commun 49:3793–3795. https://doi.org/10.1039/c3cc41068d

    Article  CAS  Google Scholar 

  34. Tyagi A, Matsumoto T, Kato T, Yoshida H (2016) Direct C–H bond activation of ethers and successive C–C bond formation with benzene by a bifunctional palladium–titania photocatalyst. Catal Sci Technol 6:4577–4583. https://doi.org/10.1039/C5CY02290H

    Article  CAS  Google Scholar 

  35. Stoll S, Schweiger A (2006) EasySpin, a comprehensive software package for spectral simulation and analysis in EPR. J Magn Reson 178:42–55. https://doi.org/10.1016/j.jmr.2005.08.013

    Article  CAS  PubMed  Google Scholar 

  36. Childress BC, Rice AC, Shevlin PB (1974) Rearrangement of the o-tolyl radical to the benzyl radical. CIDNP [chemically induced dynamic nuclear polarization] study. J Org Chem 39:3056–3058. https://doi.org/10.1021/jo00934a030

    Article  CAS  Google Scholar 

  37. Tyagi A, Yamamoto A, Yoshida H (2018) Novel blended catalysts consisting of a TiO2 photocatalyst and an Al2O3 supported Pd–Au bimetallic catalyst for direct dehydrogenative cross-coupling between arenes and tetrahydrofuran. RSC Adv 8:24021–24028. https://doi.org/10.1039/c8ra02948b

    Article  CAS  Google Scholar 

  38. Ward MD, Bard AJ (1982) Photocurrent enhancement via trapping of photogenerated electrons of titanium dioxide particles. J Phys Chem 86:3599–3605. https://doi.org/10.1021/j100215a021

    Article  CAS  Google Scholar 

  39. Jovic V, Al-Azri ZHN, Chen W-T et al (2013) Photocatalytic H2 production from ethanol-water mixtures over Pt/TiO2 and Au/TiO2 photocatalysts: a comparative study. Top Catal 56:1139–1151. https://doi.org/10.1007/s11244-013-0080-8

    Article  CAS  Google Scholar 

  40. Shimura K, Maeda K, Yoshida H (2011) Thermal acceleration of electron migration in gallium oxide photocatalysts. J Phys Chem C 115:9041–9047. https://doi.org/10.1021/jp110824n

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The present project was financially supported by Core Research for Evolutional Science and Technology, Japan Science and Technology Agency (CREST, JST; JPMJCR1541).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hisao Yoshida.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (DOCX 102 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tyagi, A., Matsumoto, T., Yamamoto, A. et al. Metal Cocatalyst Directing Photocatalytic Acetonylation of Toluene via Dehydrogenative Cross-Coupling with Acetone. Catal Lett 150, 31–38 (2020). https://doi.org/10.1007/s10562-019-02923-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02923-3

Keywords

Navigation