Skip to main content

Advertisement

Log in

Synthesis of Sm2MoO6/Ni(OH)2 by Simple Impregnation Method: Photocatalyst for Non-precious Metal and Efficient Hydrogen Production

  • Published:
Catalysis Letters Aims and scope Submit manuscript

Abstract

Sm2MoO6/Ni(OH)2 was successfully immersed in water first, and the sensitizer is Eosin Y and the sacrificial agent is triethanolamine agent for high-efficiency photocatalytic production of H2. When Sm2MoO6 was loaded onto the surface of Ni(OH)2, the photocatalytic activity (2407.48 μmol g−1 h−1) was 2.6 times that of Ni(OH)2 (925.36 μmol g−1 h−1), which was Sm2MoO6 (169.36 μmol g−1 h−1) is 14.2 times. From a series of characterizations, Sm2MoO6 is an effective cocatalyst to improve the separation of photo-generated charges and the efficiency of electron transfer. Large specific surface areas are a primary requirement for high efficiency catalysts, and the catalyst is sufficiently into contact with the sensitizer and the sacrificial agent to soar the photocatalytic activity.

Graphic Abstract

The first condition for an excellent catalyst is that it has a large specific surface area and can provide more active sites. In the dye sensitization system, the photocatalytic activity of Sm2MoO6/Ni(OH)2 is 2.6 times that of Ni(OH)2 and 14.2 times that of Sm2MoO6. Sm2MoO6 is an effective co-catalyst.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Zhang J, Liu Y, Xia B et al (2018) Facile one-step synthesis of phosphorus-doped CoS2 as efficient electrocatalyst for hydrogen evolution reaction. Electrochim Acta 259:955–961

    Article  CAS  Google Scholar 

  2. Liu Z, Xu J, Li Y et al (2018) High performance photocatalytic based on Ce doped CoWO4: controllable synthesis and enhanced photocatalytic activity. Catal Lett 148(10):3205–3213

    Article  CAS  Google Scholar 

  3. Zou X, Zhang Y et al (2015) Noble metal-free hydrogen evolution catalysts for water splitting. Chem Soc Rev 44(15):5148–5180

    Article  CAS  Google Scholar 

  4. Xu J, Huo F, Zhao Y et al (2018) In-situ La doped Co3O4 as highly efficient photocatalyst for solar hydrogen generation. Int J Hydrog Energy 43(18):8674–8682

    Article  CAS  Google Scholar 

  5. Liu Y, Yu G, Li GD et al (2015) Coupling Mo2C with nitrogen-rich nanocarbon leads to efficient hydrogen-evolution electrocatalytic sites. Angew Chem 127(37):10902–10907

    Article  Google Scholar 

  6. Meng ZD, Ullah K, Zhu L et al (2014) Modified hydrothermal fabrication of a CoS2-graphene hybrid with improved photocatalytic performance. Mater Sci Semicond Process 27:173–180

    Article  CAS  Google Scholar 

  7. Yu H, Xu J, Liu Z et al (2018) Functionalization of sheet structure MoS2 with CeO2-Co3O4 for efficient photocatalytic hydrogen evolution. J Mater Sci 53(21):15271–15284

    Article  CAS  Google Scholar 

  8. Li Y, Xu J, Liu Z et al (2018) Performance of amorphous CoSx/oxygen vacancies ZnO heterojunction photocatalytic hydrogen evolution. J Mater Sci: Mater Electron 30(1):246–258

    Google Scholar 

  9. Zhu M, Han M, Zhu C et al (2018) Strong coupling effect at the interface of cobalt phosphate-carbon dots boost photocatalytic water splitting. J Colloid Interface Sci 530:256–263

    Article  CAS  Google Scholar 

  10. Wang M, Lin M, Li J et al (2017) Metal-organic framework derived carbon-confined Ni2P nanocrystals supported on graphene for an efficient oxygen evolution reaction. Chem Commun 53(59):8372–8375

    Article  CAS  Google Scholar 

  11. Zheng S, Li X, Yan B et al (2017) Transition-metal (Fe Co, Ni) based metal-organic frameworks for electrochemical energy storage. Adv Energy Mater 7(18):1602733

    Article  Google Scholar 

  12. Dong B, Li W, Huang X et al (2019) Fabrication of hierarchical hollow Mn doped Ni(OH)2 nanostructures with enhanced catalytic activity towards electrochemical oxidation of methanol. Nano Energy 55:37–41

    Article  CAS  Google Scholar 

  13. Li Q, Chen Y, Yang T et al (2013) Preparation of 3D flower-like NiO hierarchical architectures and their electrochemical properties in lithium-ion batteries. Electrochim Acta 90(5):80–89

    Article  CAS  Google Scholar 

  14. Chen J, Zheng J et al (2015) A highly sensitive non-enzymatic glucose sensor based on tremella-like Ni(OH)2 and Au nanohybrid films. J Electroanal Chem 749:83–88

    Article  CAS  Google Scholar 

  15. Liu C, Chen Q, Hao Y et al (2019) Ni(OH)2/NiSe2 hybrid nanosheet arrays for enhanced alkaline hydrogen evolution reaction. Int J Hydrog Energy 44(10):4832–4838

    Article  CAS  Google Scholar 

  16. Wang T, Pan J, Gasore Achille K et al (2017) A green dual complexation precipitation synthesis of hierarchical α-Ni(OH)2, microspheres and their electrochemical performance. Int J Hydrog Energy 42(30):19139–19147

    Article  CAS  Google Scholar 

  17. Krehula S, Ristića M, Wu C et al (2018) Influence of Fe(III) doping on the crystal structure and properties of hydrothermally prepared β-Ni(OH)2 nanostructures. J Alloys Compd 750:687–695

    Article  CAS  Google Scholar 

  18. Zhao J, Zhang Q et al (2015) Synthesis of Ni(OH)2 nanoflakes through a novel ion diffusion method controlled by ion exchange membrane and electrochemical supercapacitive properties. Electrochim Acta 184:47–57

    Article  CAS  Google Scholar 

  19. Chen X, Chen S, Lin C et al (2015) Nickels/CdS photocatalyst prepared by flowerlike Ni/Ni(OH)2 precursor for efficiently photocatalytic H2 evolution. Int J Hydrog Energy 40(2):998–1004

    Article  CAS  Google Scholar 

  20. Jose G, Joseph C, Ittyachen MA et al (2007) Structural and optical characterization of CdSe nanocrystallites/rare earth ions in sol-gel glasses. Opt Mater 29(11):1495–1500

    Article  CAS  Google Scholar 

  21. Mani KP, George V, Ramakrishnan BP et al (2015) Synthesis and photoluminescence studies of one dimensional Sm2MoO6 nanofibers derived from electrospinning process. J Mater Res Technol 4(2):224–227

    Article  CAS  Google Scholar 

  22. Tao D, Meng L, Peng W et al (2018) Synthesis of hierarchical tube-like yolk-shell Co3O4@NiMoO4, for enhanced supercapacitor performance. Int J Hydrog Energy 43(31):14569–14577

    Article  Google Scholar 

  23. Du P, Yu JS et al (2017) Near-ultraviolet light induced visible emissions in Er3+-activated La2MoO6 nanoparticles for solid-state lighting and non-contact thermometry. Chem Eng J 327:109–119

    Article  CAS  Google Scholar 

  24. Yu L, Nogami M (2010) The synthesis and photoluminescent properties of one-dimensional ZnMoO4: Eu3+ nanocrystals. Mater Lett 64(14):1644–1646

    Article  CAS  Google Scholar 

  25. Ghorai TK, Dhak D, Biswas SK et al (2007) Photocatalytic oxidation of organic dyes by nano-sized metal molybdate incorporated titanium dioxide (MxMoxTi1−xO6) (M = Ni, Cu, Zn) photocatalysts. J Mol Catal A 273(1):224–229

    Article  CAS  Google Scholar 

  26. Ray SK, Dhakal D, Kshetri YK et al (2017) Cu-α-NiMoO4, photocatalyst for degradation of methylene blue with pathways and antibacterial performance. J Photochem Photobiol, A 348:18–32

    Article  CAS  Google Scholar 

  27. Namvar F, Beshkar F, Salavati-Niasari M et al (2017) Novel microwave-assisted synthesis of leaf-like MnMoO4 nanostructures and investigation of their photocatalytic performance. J Mater Sci: Mater Electron 28(11):7962–7968

    CAS  Google Scholar 

  28. Mani Kamal P, Vimal G, Biju PR et al (2015) Optical nonlinearity and photoluminescence studies of red emitting samarium molybdate nanophosphor. ECS J Solid State Sci Technol 4(5):67–71

    Article  Google Scholar 

  29. Chen L, Zhang J, Ren X et al (2017) Ni(OH)2-CoS2 hybrid nanowire array: a superior non-noble-metal catalyst toward the hydrogen evolution reaction in alkaline media. Nanoscale 9(43):16632–16637

    Article  CAS  Google Scholar 

  30. Yu H, Xu J, Guo H et al (2017) Synergistic effect of rare earth metal Sm oxides and Co1-xS on sheet structure MoS2 for photocatalytic hydrogen evolution. RSC Adv 7(89):56417–56425

    Article  CAS  Google Scholar 

  31. Huang Y, Cui F, Zhao Y et al (2018) NiMoO4 nanorod deposited carbon sponges with ant-nest-like interior channels for high-performance pseudocapacitors. Inorg Chem Front 5(7):1594–1601

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the Natural Science Foundation of Ningxia Province (NZ17262).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jing Xu.

Ethics declarations

Conflict of interest

There are no conflicts to declare.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, Z., Xu, J., Liao, Q. et al. Synthesis of Sm2MoO6/Ni(OH)2 by Simple Impregnation Method: Photocatalyst for Non-precious Metal and Efficient Hydrogen Production. Catal Lett 150, 39–48 (2020). https://doi.org/10.1007/s10562-019-02947-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10562-019-02947-9

Keywords

Navigation