Skip to main content
Log in

Fabrication of ZnO@Cotton fabric with anti-bacterial and radiation barrier properties using an economical and environmentally friendly method

  • Original Research
  • Published:
Cellulose Aims and scope Submit manuscript

Abstract

Recent years have witnessed the explosive progress of functional materials, which are made by loading various metal oxides onto fabrics. A cost-effective, facile, and simple approach of loading hexagonal zinc oxide (ZnO) sheets onto fabrics is highly desired. Here, the fabrication of the multifunctional ZnO@cotton fabrics is demonstrated using a surface micro-dissolution method by sodium hydroxide/urea (NaOH/urea) and zinc chloride (ZnCl2) aqueous solution. The hexagonal sheet ZnO forms the reflective layer to ultraviolet and near-infrared rays. The UV reflectivity of ZnO@cotton fabric is higher than the raw fabric in the range of 10.9–18.8% and UPF value of treated fabric was 100 + . Infrared barrier results were obtained through the phenomenon of heat radiation transfer obstruction, when fabrics being placed on the hot plate of 120 °C, the temperature difference between raw and treated fabrics is 6.6 °C. Also, the high antibacterial activity against Escherichia coli and Staphylococcus aureus cultures of ZnO@cotton fabric was testified.

Graphic abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4

Similar content being viewed by others

References

  • Abidi N (2012) Super-hydrophobic cotton fabric prepared using nanoparticles and molecular vapor deposition methods. ACS Symp 1107:149–165

    Article  CAS  Google Scholar 

  • Ang L, Zhang L (2007) Advance in solvents of cellulose. Acta Polym Sin 007:937–944

    Google Scholar 

  • Arputharaj A, Nadanathangam V, Shukla SR (2017) A simple and efficient protocol to develop durable multifunctional property to cellulosic materials using in situ generated nano-ZnO. Cellulose 24:1–12

    Article  Google Scholar 

  • Ching CG, Lee SC, Ng SS et al (2013) Infrared reflectance studies of hillock-like porous zinc oxide thin films. Thin Solid Films 539:70–74

    Article  CAS  Google Scholar 

  • El-Naggar ME, Hassabo AG, Mohamed AL, Shaheen TI (2017) Surface modification of SiO2 coated ZnO nanoparticles for multifunctional cotton fabrics. J Colloid Interface Sci 498:413–422

    Article  CAS  Google Scholar 

  • El-Nahhal IM, Elmanama AA, El Ashgar NM et al (2017) Stabilization of nano-structured ZnO particles onto the surface of cotton fibers using different surfactants and their antimicrobial activity. Ultrason Sonochem 38:478

    Article  CAS  Google Scholar 

  • Fan T, Qian Q, Hou Z et al (2018) Preparation of smart and reversible wettability cellulose fabrics for oil/water separation using a facile and economical method. Carbohydr Polym 200:63–71. https://doi.org/10.1016/j.carbpol.2018.07.040

    Article  CAS  PubMed  Google Scholar 

  • French AD (2014) Idealized powder diffraction patterns for cellulose polymorphs. Cellulose 21:885–896

    Article  CAS  Google Scholar 

  • Hu R, Zhao Z, Jing Z et al (2017) Surface micro-dissolution of ramie fabrics with NaOH/urea to eliminate hairiness. Cellulose 24:5251–5259

    Article  CAS  Google Scholar 

  • Hu R, Zhao Z, Zhou J et al (2019) Ultrasound assisted surface micro-dissolution to embed nano TiO2 on cotton fabrics in ZnCl2 aqueous solution. Ultrason Sonochem 56:160–166. https://doi.org/10.1016/j.ultsonch.2019.04.006

    Article  CAS  PubMed  Google Scholar 

  • Hvam JM (1971) Temperature-induced wavelength shift of electron-beam-pumped lasers from CdSe, CdS, and ZnO. Phys Rev B 4:4459–4464

    Article  Google Scholar 

  • Kiomarsipour N, Razavi RS (2014) Hydrothermal synthesis of ZnO nanopigments with high UV absorption and vis/NIR reflectance. Ceram Int 40:11261–11268

    Article  CAS  Google Scholar 

  • Lee YJ, Ruby DS, Peters DW et al (2008) ZnO nanostructures as efficient antireflection layers in solar cells. Nano Lett 8:1501–1505

    Article  CAS  Google Scholar 

  • Lei C, Lou Q, Wang Z (2005) Study on stimulated emission from ZnO nanoparticle. Proc SPIE 6020:60201–60207

    Google Scholar 

  • Li Y, Zou Y et al (2013) Investigation of antibacterial properties of nano-ZnO assembled cotton fibers. Fibers Polym 14:990–995

    Article  CAS  Google Scholar 

  • Li L, Fan T, Hu R et al (2017) Surface micro-dissolution process for embedding carbon nanotubes on cotton fabric as a conductive textile. Cellulose 24:1121–1128

    Article  CAS  Google Scholar 

  • Liu W, Liu S, Liu T et al (2019) Eco-friendly post-consumer cotton waste recycling for regenerated cellulose fibers. Carbohydr Polym 206:141–148. https://doi.org/10.1016/j.carbpol.2018.10.046

    Article  CAS  PubMed  Google Scholar 

  • Look DC (2001) Recent advances in ZnO materials and devices. Mater Sci Eng B 80:383–387

    Article  Google Scholar 

  • Lu D, Qiang G, Wu X, Fan Y (2017) ZnO nanostructures decorated hollow glass microspheres as near infrared reflective pigment. Ceram Int 43:S0272884217306776

    Google Scholar 

  • Lu M, Hu R, Zhao Z et al (2018) Surface micro-dissolve treatment of cotton fabrics with sodium hydroxide/urea to impart crease-resistance properties. Text Res J 88:1671–1676. https://doi.org/10.1177/0040517517708534

    Article  CAS  Google Scholar 

  • Okuhara Y, Kato T, Matsubara H et al (2011) Near-infrared reflection from periodically aluminium-doped zinc oxide thin films. Thin Solid Films 519:2280–2286

    Article  CAS  Google Scholar 

  • Petkova P, Francesko A, Perelshtein I et al (2016) Simultaneous sonochemical-enzymatic coating of medical textiles with antibacterial ZnO nanoparticles. Ultrason Sonochem 29:244–250

    Article  CAS  Google Scholar 

  • Pung SY, Choy KL, Vinogradov EA et al (2010) Structural and infrared properties of zinc oxide film and nanowires. J Cryst Growth 312:2220–2225

    Article  CAS  Google Scholar 

  • Ran L, Wang S, Lu A, Zhang L (2015) Dissolution of cellulose from different sources in an NaOH/urea aqueous system at low temperature. Cellulose 22:339–349

    Article  Google Scholar 

  • Salat M, Petkova P, Hoyo J et al (2018) Durable antimicrobial cotton textiles coated sonochemically with ZnO nanoparticles embedded in an in-situ enzymatically generated bioadhesive. Carbohydr Polym 189:198

    Article  CAS  Google Scholar 

  • Sen S, Losey BP, Gordon EE et al (2016) Ionic liquid character of zinc chloride hydrates define solvent characteristics that afford solubility of cellulose. J Phys Chem B 120:1134

    Article  CAS  Google Scholar 

  • Sricharussin W, Threepopnatkul P (2011) Effect of various shapes of zinc oxide nanoparticles on cotton fabric for UV-blocking and anti-bacterial properties. Fibers Polym 12:1037–1041

    Article  CAS  Google Scholar 

  • Tang Q, Gao LL, Yu B, Cong HL (2017) Fabrication of core-shell TiO2@SiO2 composites and investigation on its photocatalytic performance of methyl orange from aqueous solution. Integr Ferroelectr 179:159–165

    Article  CAS  Google Scholar 

  • Tao F, Hu R, Zhao Z et al (2016) Surface micro-dissolve method of imparting self-cleaning property to cotton fabrics in NaOH/urea aqueous solution. Appl Surf Sci 400:524–529

    Google Scholar 

  • Tao F, Zhao Z, Jing Z et al (2018) Fabrication of magnetic cotton fabrics using surface micro-dissolving technology in ZnCl2 aqueous solution. Cellulose 25:1437–1447

    Article  Google Scholar 

  • Thennarasu G, Sivasamy A (2016) Enhanced visible photocatalytic activity of cotton ball like nano structured Cu doped ZnO for the degradation of organic pollutant. Ecotoxicol Environ Saf 134:412–420

    Article  CAS  Google Scholar 

  • Thi VHT, Lee BK, Ngo CV (2017) Durable superhydrophobic cotton filter prepared at low temperature for highly efficient hexane and water separation. J Taiwan Inst Chem Eng 71:527–536

    Article  Google Scholar 

  • Tomšič B, Jovanovski V, Orel B et al (2015) Bacteriostatic photocatalytic properties of cotton modified with TiO2 and TiO2/aminopropyltriethoxysilane. Cellulose 22:3441–3463

    Article  Google Scholar 

  • Xiong J, Zhao XF (2010) Solubility of cellulose in ZnCl2 aqueous solution and structure of regenerated cellulose. J South China Univ Technol 38:23–27

    CAS  Google Scholar 

  • Xu B, Cai Z (2008) Fabrication of a superhydrophobic ZnO nanorod array film on cotton fabrics via a wet chemical route and hydrophobic modification. Appl Surf Sci 254:5899–5904

    Article  CAS  Google Scholar 

  • Xu Q, Chen C, Rosswurm K et al (2016) A facile route to prepare cellulose-based films. Carbohydr Polym 149:274–281

    Article  CAS  Google Scholar 

  • Xue CH, Yin W, Zhang P et al (2013) UV-durable superhydrophobic textiles with UV-shielding properties by introduction of ZnO/SiO2 core/shell nanorods on PET fibers and hydrophobization. Colloids Surf A Physicochem Eng Asp 427:7–12

    Article  CAS  Google Scholar 

  • Yadav A, Prasad V, Kathe AA et al (2006) Functional finishing in cotton fabrics using zinc oxide nanoparticles. Bull Mater Sci 29:641–645

    Article  CAS  Google Scholar 

  • Yin CH, Jia W, Jian-Zhong ST (2011) UV-durable superhydrophobic textiles with UV-shielding property by coating fibers with ZnO/SiO2 core/shell particles. Nanotechnology 441:351–355

    Google Scholar 

  • Yu J, Tian N (2016) High spectrum selectivity and enhanced responsivity of a ZnO ultraviolet photodetector realized by the addition of ZnO nanoparticles layer. Phys Chem Chem Phys 18:24129–24133

    Article  CAS  Google Scholar 

Download references

Acknowledgments

This work was financially supported by Fundamental Research Funds for the Central Universities (XDJK2014B005), Doctoral Foundation Project of Southwest University (SWU118080).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Yiping Liu or Ming Lu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, R., Yang, J., Yang, P. et al. Fabrication of ZnO@Cotton fabric with anti-bacterial and radiation barrier properties using an economical and environmentally friendly method. Cellulose 27, 2901–2911 (2020). https://doi.org/10.1007/s10570-019-02965-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10570-019-02965-1

Keywords

Navigation