Volume 222, 2020

Modulating donor–acceptor transition energies in phosphorus–boron co-doped silicon nanocrystals via X- and L-type ligands

Abstract

In this work, we explore the effect of ligand binding groups on the visible and NIR photoluminescent properties within phosphorus–boron co-doped silicon nanocrystals (PB:Si NCs) by exploiting both the X-type (covalent) and L-type (Lewis donor molecule) bonding interactions. We find that the cooperative nature of both X- and L-type bonding from alkoxide/alcohol, alkylamide/alkylamine, and alkylthiolate/alkylthiol on PB:Si NCs results in photoluminescence (PL) energy blue shifts from the as-synthesized, hydride-terminated NCs (PB:Si–H) in excess of 0.4 eV, depending on the surface termination. These PL blue shifts appear greatest in the most strongly confined samples with diameters <4 nm where the surface-to-volume ratio is high and, therefore, the ligand effects are most pronounced. A correlation between the donor group strength (either X-type or L-type) and the degree of D–A state modulation is found, and the proportion of the PL blue shift from the X- and L-type interactions is quantified. Raman spectroscopy is used to provide additional evidence of the strength of the L-type donor groups. Additionally, we probe how the nature of the ligand chemistry affects the radiative lifetime and PL efficiency and find that the ligands do not significantly change the D–A emission dynamics, and all samples retain the long 50–130 μs lifetimes characteristic of these transitions. Finally, we describe three mechanisms that operate to affect the D–A recombination energies: (1) X-type ligands that modulate the PB:Si–X NC wavefunction; (2) L-type ligands that perturb the donor and acceptor states via a molecular orbital theory picture; and (3) X- and L-type ligands that cause a dielectric increase around the PB:Si NC core, which provides Coulomb screening and modulates the donor and acceptor states even further.

Graphical abstract: Modulating donor–acceptor transition energies in phosphorus–boron co-doped silicon nanocrystals via X- and L-type ligands

Associated articles

Supplementary files

Article information

Article type
Paper
Submitted
08 Oct 2019
Accepted
06 Jan 2020
First published
06 Jan 2020

Faraday Discuss., 2020,222, 201-216

Author version available

Modulating donor–acceptor transition energies in phosphorus–boron co-doped silicon nanocrystals via X- and L-type ligands

G. F. Pach, G. M. Carroll, H. Zhang and N. R. Neale, Faraday Discuss., 2020, 222, 201 DOI: 10.1039/C9FD00106A

To request permission to reproduce material from this article, please go to the Copyright Clearance Center request page.

If you are an author contributing to an RSC publication, you do not need to request permission provided correct acknowledgement is given.

If you are the author of this article, you do not need to request permission to reproduce figures and diagrams provided correct acknowledgement is given. If you want to reproduce the whole article in a third-party publication (excluding your thesis/dissertation for which permission is not required) please go to the Copyright Clearance Center request page.

Read more about how to correctly acknowledge RSC content.

Social activity

Spotlight

Advertisements