Skip to main content

Thank you for visiting nature.com. You are using a browser version with limited support for CSS. To obtain the best experience, we recommend you use a more up to date browser (or turn off compatibility mode in Internet Explorer). In the meantime, to ensure continued support, we are displaying the site without styles and JavaScript.

  • Article
  • Published:

Polynuclear lanthanide–diketonato clusters for the catalytic hydroboration of carboxamides and esters

Abstract

Catalytic reduction of carboxamides into their corresponding amines is an attractive but extremely challenging transformation, which often meets with limited success; the valuable amine products drive ongoing research in this area. Here we show the direct deoxygenation of carboxamides using earth-abundant lanthanum catalysts in the presence of HBpin, presenting good to excellent yields with broad substrate scope and functional group/heteroatom tolerance. Moreover, this method is also effective in catalysing the hydroboration of esters. Finally, selective cleavage of the amide group bonds (C–N versus C–O) could be achieved based on the nature of the nitrogen substituents.

This is a preview of subscription content, access via your institution

Access options

Buy this article

Prices may be subject to local taxes which are calculated during checkout

Fig. 1: Examples of lanthanides in catalytic hydroboration reactions.
Fig. 2: POMs with various lanthanide elements.
Fig. 3: Modulating bond activation by changing the R group.

Similar content being viewed by others

Data availability

The crystallography data for compounds 1, 2, 3, 4, 5 and 20 have been deposited at the Cambridge Crystallographic Data Centre (CCDC) as 1945093–1945098, respectively and can be obtained free of charge from the CCDC via www.ccdc.cam.ac.uk/getstructures. Experimental details, NMR spectra, details of kinetics experiments, and crystallographic information files are included as Supplementary Information. All other data are available from the authors on reasonable request.

References

  1. Magano, J. & Dunetz, J. R. Large-scale carbonyl reductions in the pharmaceutical industry. Org. Process. Res. Dev. 16, 1156–1184 (2012).

    CAS  Google Scholar 

  2. Chong, C. C. & Kinjo, R. Catalytic hydroboration of carbonyl derivatives, imines, and carbon dioxide. ACS Catal. 5, 3238–3259 (2015).

    CAS  Google Scholar 

  3. Dagorne, S. & Wehmschulte, R. Recent developments on the use of group 13 metal complexes in catalysis. ChemCatChem 10, 2509–2520 (2018).

    CAS  Google Scholar 

  4. Mukherjee, A. & Milstein, D. Homogeneous catalysis by cobalt and manganese pincer complexes. ACS Catal. 8, 11435–11469 (2018).

    CAS  Google Scholar 

  5. Wei, D. & Darcel, C. Iron catalysis in reduction and hydrometalation reactions. Chem. Rev. 119, 2550–2610 (2019).

    CAS  PubMed  Google Scholar 

  6. Geier, S. J., Vogels, C. M. & Westcott, S. A. in Boron Reagents in Synthesis Vol. 1236, ACS Symposium Series (ed. Coca, A.) Ch. 6, 209–225 (American Chemical Society, 2016).

  7. Zaidlewicz, M., Wolan, A. & Budny, M. in Comprehensive Organic Synthesis II 2nd edn (ed Knochel, P.) 877–963 (Elsevier, 2014).

  8. Fan, W., Li, L. & Zhang, G. Branched-selective alkene hydroboration catalyzed by earth-abundant metals. J. Org. Chem. 84, 5987–5996 (2019).

    CAS  PubMed  Google Scholar 

  9. Shegavi, M. L. & Bose, S. K. Recent advances in the catalytic hydroboration of carbonyl compounds. Catal. Sci. Technol. 119, 2550–2610 (2019).

    Google Scholar 

  10. Stachowiak, H., Kaźmierczak, J., Kuciński, K. & Hreczycho, G. Catalyst-free and solvent-free hydroboration of aldehydes. Green. Chem. 20, 1738–1742 (2018).

    CAS  Google Scholar 

  11. Xu, X. et al. Catalyst-free approach for hydroboration of carboxylic acids under mild conditions. ACS Omega 4, 6775–6783 (2019).

    CAS  PubMed  PubMed Central  Google Scholar 

  12. Frick, M., Horn, J., Wadepohl, H., Kaifer, E. & Himmel, H.-J. Catalyst-free hydroboration of CO2 with a nucleophilic diborane(4). Chem. Eur. J. 24, 16983–16986 (2018).

    CAS  PubMed  Google Scholar 

  13. Yuan, K. et al. Pyridyl directed catalyst-free trans-hydroboration of internal alkynes. Org. Lett. 18, 720–723 (2016).

    CAS  PubMed  Google Scholar 

  14. Wang, W. et al. Catalyst-free and solvent-free hydroboration of ketones. N. J. Chem. 14, 3255–3258 (2019).

    Google Scholar 

  15. Zhu, Z. et al. Lanthanide aryloxides catalyzed hydroboration of aldehydes and ketones. Catal. Commun. 112, 26–30 (2018).

    CAS  Google Scholar 

  16. Patnaik, S. & Sadow, A. D. Interconverting lanthanum hydride and borohydride catalysts for C=O reduction and C–O bond cleavage. Angew. Chem. Int. Ed. 58, 2505–2509 (2019).

    CAS  Google Scholar 

  17. Yan, D. et al. Highly efficient hydroboration of carbonyl compounds catalyzed by tris(methylcyclopentadienyl)lanthanide complexes. Org. Biomol. Chem. 16, 2787–2791 (2018).

    CAS  PubMed  Google Scholar 

  18. Chen, S. et al. Tris(cyclopentadienyl)lanthanide complexes as catalysts for hydroboration reaction toward aldehydes and ketones. Org. Lett. 19, 3382–3385 (2017).

    CAS  PubMed  Google Scholar 

  19. Weidner, V. L., Barger, C. J., Delferro, M., Lohr, T. L. & Marks, T. J. Rapid, mild, and selective ketone and aldehyde hydroboration/reduction mediated by a simple lanthanide catalyst. ACS Catal. 7, 1244–1247 (2017).

    CAS  Google Scholar 

  20. Dudnik, A. S., Weidner, V. L., Motta, A., Delferro, M. & Marks, T. J. Atom-efficient regioselective 1,2-dearomatization of functionalized pyridines by an earth-abundant organolanthanide catalyst. Nat. Chem. 6, 1100 (2014).

    CAS  PubMed  Google Scholar 

  21. Wang, W. et al. Ytterbium-catalyzed hydroboration of aldehydes and ketones. J. Org. Chem. 83, 69–74 (2018).

    CAS  PubMed  Google Scholar 

  22. Huang, Z. et al. Well-defined amidate-functionalized n-heterocyclic carbene-supported rare-earth metal complexes as catalysts for efficient hydroboration of unactivated imines and nitriles. Inorg. Chem. 57, 15069–15078 (2018).

    CAS  PubMed  Google Scholar 

  23. Arrowsmith, M., Hill, M. S., Hadlington, T., Kociok-Köhn, G. & Weetman, C. Magnesium-catalyzed hydroboration of pyridines. Organometallics 30, 5556–5559 (2011).

    CAS  Google Scholar 

  24. Khalimon, A. Y., Farha, P., Kuzmina, L. G. & Nikonov, G. I. Catalytic hydroboration by an imido-hydrido complex of Mo(iv). Chem. Commun. 48, 455–457 (2012).

    CAS  Google Scholar 

  25. Mukherjee, D., Ellern, A. & Sadow, A. D. Magnesium-catalyzed hydroboration of esters: evidence for a new zwitterionic mechanism. Chem. Sci. 5, 959–964 (2014).

    CAS  Google Scholar 

  26. Mukherjee, D., Shirase, S., Spaniol, T. P., Mashima, K. & Okuda, J. Magnesium hydridotriphenylborate [Mg(thf)6][HBPh3]2: a versatile hydroboration catalyst. Chem. Commun. 52, 13155–13158 (2016).

    CAS  Google Scholar 

  27. Barman, M. K., Baishya, A. & Nembenna, S. Magnesium amide catalyzed selective hydroboration of esters. Dalton Trans. 46, 4152–4156 (2017).

    CAS  PubMed  Google Scholar 

  28. Volkov, A., Tinnis, F., Slagbrand, T., Trillo, P. & Adolfsson, H. Chemoselective reduction of carboxamides. Chem. Soc. Rev. 45, 6685–6697 (2016).

    CAS  PubMed  Google Scholar 

  29. Chardon, A., Morisset, E., Rouden, J. & Blanchet, J. Recent advances in amide reductions. Synthesis 50, 984–997 (2018).

    CAS  Google Scholar 

  30. Igarashi, M. & Fuchikami, T. Transition-metal complex-catalyzed reduction of amides with hydrosilanes: a facile transformation of amides to amines. Tetrahedron Lett. 42, 1945–1947 (2001).

    CAS  Google Scholar 

  31. Cheng, C. & Brookhart, M. Iridium-Catalyzed reduction of secondary amides to secondary amines and imines by diethylsilane. J. Am. Chem. Soc. 134, 11304–11307 (2012).

    CAS  PubMed  Google Scholar 

  32. Park, S. & Brookhart, M. Development and mechanistic investigation of a highly efficient iridium(V) silyl complex for the reduction of tertiary amides to amines. J. Am. Chem. Soc. 134, 640–653 (2012).

    CAS  PubMed  Google Scholar 

  33. Das, S., Addis, D., Junge, K. & Beller, M. Zinc-catalyzed chemoselective reduction of tertiary and secondary amides to amines. Chem. Eur. J. 17, 12186–12192 (2011).

    CAS  PubMed  Google Scholar 

  34. Obligacion, J. V. & Chirik, P. J. Highly selective bis(imino)pyridine iron-catalyzed alkene hydroboration. Org. Lett. 15, 2680–2683 (2013).

    CAS  PubMed  Google Scholar 

  35. Reeves, J. T. et al. A practical procedure for reduction of primary, secondary and tertiary amides to amines. Adv. Synth. Catal. 355, 47–52 (2013).

    CAS  Google Scholar 

  36. Lampland, N. L., Hovey, M., Mukherjee, D. & Sadow, A. D. Magnesium-catalyzed mild reduction of tertiary and secondary amides to amines. ACS Catal. 5, 4219–4226 (2015).

    CAS  Google Scholar 

  37. Gudun, K. A. et al. POCN Ni(ii) pincer complexes: synthesis, characterization and evaluation of catalytic hydrosilylation and hydroboration activities. Dalton Trans. 48, 1732–1746 (2019).

    CAS  PubMed  Google Scholar 

  38. Hanada, S., Ishida, T., Motoyama, Y. & Nagashima, H. The ruthenium-catalyzed reduction and reductive N-alkylation of secondary amides with hydrosilanes: practical synthesis of secondary and tertiary amines by judicious choice of hydrosilanes. J. Org. Chem. 72, 7551–7559 (2007).

    CAS  PubMed  Google Scholar 

  39. Li, B., Sortais, J.-B. & Darcel, C. Unexpected selectivity in ruthenium-catalyzed hydrosilylation of primary amides: synthesis of secondary amines. Chem. Commun. 49, 3691–3693 (2013).

    CAS  Google Scholar 

  40. Das, S., Addis, D., Zhou, S., Junge, K. & Beller, M. Zinc-catalyzed reduction of amides: unprecedented selectivity and functional group tolerance. J. Am. Chem. Soc. 132, 1770–1771 (2010).

    CAS  PubMed  Google Scholar 

  41. Simmons, B. J., Hoffmann, M., Hwang, J., Jackl, M. K. & Garg, N. K. Nickel-catalyzed reduction of secondary and tertiary amides. Org. Lett. 19, 1910–1913 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  42. Huang, P.-Q., Lang, Q.-W. & Wang, Y.-R. Mild metal-free hydrosilylation of secondary amides to amines. J. Org. Chem. 81, 4235–4243 (2016).

    CAS  PubMed  Google Scholar 

  43. Chardon, A. et al. Borinic acid catalysed reduction of tertiary amides with hydrosilanes: a mild and chemoselective synthesis of amines. Chem. Eur. J. 23, 2005–2009 (2017).

    CAS  PubMed  Google Scholar 

  44. Ni, J., Oguro, T., Sawazaki, T., Sohma, Y. & Kanai, M. Hydroxy group directed catalytic hydrosilylation of amides. Org. Lett. 20, 7371–7374 (2018).

    CAS  PubMed  Google Scholar 

  45. Khalimon, A. Y., Gudun, K. A. & Hayrapetyan, D. Base metal catalysts for deoxygenative reduction of amides to amines. Catalysts 9, 490 (2019).

    Google Scholar 

  46. Smith, A. M. & Whyman, R. Review of methods for the catalytic hydrogenation of carboxamides. Chem. Rev. 114, 5477–5510 (2014).

    CAS  PubMed  Google Scholar 

  47. Balaraman, E., Gnanaprakasam, B., Shimon, L. J. W. & Milstein, D. Direct hydrogenation of amides to alcohols and amines under mild conditions. J. Am. Chem. Soc. 132, 16756–16758 (2010).

    CAS  PubMed  Google Scholar 

  48. Barrios-Francisco, R. et al. PNN ruthenium pincer complexes based on phosphinated 2,2′-dipyridinemethane and 2,2′-oxobispyridine. Metal–ligand cooperation in cyclometalation and catalysis. Organometallics 32, 2973–2982 (2013).

    CAS  Google Scholar 

  49. Szostak, M., Spain, M., Eberhart, A. J. & Procter, D. J. Highly chemoselective reduction of amides (primary, secondary, tertiary) to alcohols using SmI2/amine/H2O under mild conditions. J. Am. Chem. Soc. 136, 2268–2271 (2014).

    CAS  PubMed  PubMed Central  Google Scholar 

  50. Huq, S. R., Shi, S., Diao, R. & Szostak, M. Mechanistic study of SmI2/H2O and SmI2/amine/H2O-promoted chemoselective reduction of aromatic amides (primary, secondary, tertiary) to alcohols via aminoketyl radicals. J. Org. Chem. 82, 6528–6540 (2017).

    CAS  PubMed  Google Scholar 

  51. Zhang, B., Li, H., Ding, Y., Yan, Y. & An, J. Reduction and reductive deuteration of tertiary amides mediated by sodium dispersions with distinct proton donor-dependent chemoselectivity. J. Org. Chem. 83, 6006–6014 (2018).

    CAS  PubMed  Google Scholar 

  52. Cabrero-Antonino, J. R. et al. Efficient base-free hydrogenation of amides to alcohols and amines catalyzed by well-defined pincer imidazolyl–ruthenium complexes. ACS Catal. 6, 47–54 (2016).

    CAS  Google Scholar 

  53. Tinnis, F., Volkov, A., Slagbrand, T. & Adolfsson, H. Chemoselective reduction of tertiary amides under thermal control: formation of either aldehydes or amines. Angew. Chem. Int. Ed. 55, 4562–4566 (2016).

    CAS  Google Scholar 

  54. Papa, V. et al. Efficient and selective hydrogenation of amides to alcohols and amines using a well-defined manganese–PNN pincer complex. Chem. Sci. 8, 3576–3585 (2017).

    CAS  PubMed  PubMed Central  Google Scholar 

  55. Ong, D. Y. et al. Controlled reduction of carboxamides to alcohols or amines by zinc hydrides. Angew. Chem. Int. Ed. 58, 4992–4997 (2019).

    CAS  Google Scholar 

  56. W. Gribble, G. Sodium borohydride in carboxylic acid media: a phenomenal reduction system. Chem. Soc. Rev. 27, 395–404 (1998).

    Google Scholar 

  57. Seyden-Penne, J. Reductions by the Alumino- and Borohydrides in Organic Synthesis 2nd edn (Wiley, 1997).

  58. Das, S., Wendt, B., Möller, K., Junge, K. & Beller, M. Two iron catalysts are better than one: a general and convenient reduction of aromatic and aliphatic primary amides. Angew. Chem. Int. Ed. 51, 1662–1666 (2012).

    CAS  Google Scholar 

  59. Blondiaux, E. & Cantat, T. Efficient metal-free hydrosilylation of tertiary, secondary and primary amides to amines. Chem. Commun. 50, 9349–9352 (2014).

    CAS  Google Scholar 

  60. Tamang, S. R. & Findlater, M. Iron catalyzed hydroboration of aldehydes and ketones. J. Org. Chem. 82, 12857–12862 (2017).

    CAS  PubMed  Google Scholar 

  61. Tamang, S. R. & Findlater, M. Cobalt catalysed reduction of CO2 via hydroboration. Dalton Trans. 47, 8199–8203 (2018).

    CAS  PubMed  Google Scholar 

  62. Tamang, S. R., Singh, A., Unruh, D. K. & Findlater, M. Nickel-catalyzed regioselective 1,4-hydroboration of N-heteroarenes. ACS Catal. 8, 6186–6191 (2018).

    CAS  Google Scholar 

  63. Tamang, S. R. et al. Cobalt-catalyzed hydroboration of alkenes, aldehydes, and ketones. Org. Lett. 20, 6695–6700 (2018).

    CAS  PubMed  Google Scholar 

  64. Orwoll, R. A. & Thompson, D. W. Formation of Metallic Nanophases in Polymeric Matrices for Space Applications: (1) Synthesis of Flexible and Light Weight Optically Reflective Polymeric Hybrid Materials (2) Enhancement of Dimensional Stability and Solvent Insolubility of Inorganic-Polymeric Hybrid Films (College of William and Mary, 1999).

  65. Boeyens, J. C. A. & de Villiers, J. P. R. Crystal structure of the basic erbium tetramethyl-heptanedionate, Er8O(thd)10(OH)12. J. Cryst. Mol. Struct. 2, 197–211 (1972).

    CAS  Google Scholar 

  66. Poncelet, O. & Hubert-Pfalzgraf, L. G. Reactivity of neodymium(III) Isopropoxide derivatives: synthesis, characterization and crystal structure of [Nd43-OH)221-acac)6(acac)4]. Polyhedron 8, 2183–2188 (1989).

    CAS  Google Scholar 

  67. Plakatouras, J. C. et al. Synthesis and structural characterisation of two novel Gdβ-diketonates [Gd43-OH)42-H2O)2(H2O)4(hfpd)8]·2C6H6·H2O 1 and [Gd(hfpd)3(Me2CO)(H2O)] 2(hfpd–H = 1,1,1,5,5,5-hexafluoropentane-2,4-dione). J. Chem. Soc., Chem. Commun. 1994, 2455–2456 (1994).

    Google Scholar 

  68. Xiong, R.-G., Zuo, J.-L., Yu, Z., You, X.-Z. & Chen, W. Eu54-OH)(μ3-OH)4(μ-DBM)4(DBM)6 (DBM=dibenzoylmethide): a novel Eu5 square-pyramid polynuclear complex with a rare μ4-OH bridging mode. Inorg. Chem. Commun. 2, 490–494 (1999).

    CAS  Google Scholar 

  69. Ma, X., Yang, W., Chen, L. & Zhao, J. Significant developments in rare-earth-containing polyoxometalate chemistry: synthetic strategies, structural diversities and correlative properties. CrystEngComm 17, 8175–8197 (2015).

    CAS  Google Scholar 

Download references

Acknowledgements

The authors are grateful to both The National Science Foundation (CHE-1554906) and the Welch Foundation (D-1807) for their financial support.

Author information

Authors and Affiliations

Authors

Contributions

S.R.T. and M.F. conceived the project, designed the experiments and wrote the manuscript. S.R.T., A.S., D.B., A.R.B., A.A.W., K.G. and C.M. conducted all experiments and substrate scope studies. D.K.U. performed crystallography. All authors discussed the results and commented on the manuscript.

Corresponding author

Correspondence to Michael Findlater.

Ethics declarations

Competing interests

The authors declare no competing interests.

Additional information

Publisher’s note Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Supplementary information

Supplementary Information

Supplementary Methods, Tables 1 and 2, Figs. 1–176 and references.

Compound 1

Crystallographic Data for Compound 1.

Compound 2

Crystallographic Data for Compound 2.

Compound 3

Crystallographic Data for Compound 3.

Compound 4

Crystallographic Data for Compound 4.

Compound 5

Crystallographic Data for Compound 5.

Compound 20

Crystallographic Data for Compound 20.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tamang, S.R., Singh, A., Bedi, D. et al. Polynuclear lanthanide–diketonato clusters for the catalytic hydroboration of carboxamides and esters. Nat Catal 3, 154–162 (2020). https://doi.org/10.1038/s41929-019-0405-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1038/s41929-019-0405-5

This article is cited by

Search

Quick links

Nature Briefing

Sign up for the Nature Briefing newsletter — what matters in science, free to your inbox daily.

Get the most important science stories of the day, free in your inbox. Sign up for Nature Briefing