Skip to main content
Log in

APETALA 2 transcription factor CBX1 is a regulator of mycorrhizal symbiosis and growth of Lotus japonicus

  • Original Article
  • Published:
Plant Cell Reports Aims and scope Submit manuscript

Abstract

Key message

An AP2 family gene CBX1 is involved in mycorrhizal symbiosis and growth of Lotus japonicus.

Abstract

APETALA 2 (AP2) transcriptional regulator is highly conserved in plants. CBX1 from Lotus japonicus is a member of AP2 family. AMF (Arbuscular mycorrhizal fungi) inoculation experiment demonstrated that expression of CBX1 was significantly induced by AMF. Further promoter analysis showed that the – 764 to − 498 bp region of the CBX1 promoter containing CTTC motif is the AMF responsive region. Functional analysis of cbx1 mutant suggested CBX1 is critical for mycorrhizal symbiosis, especially for arbuscule formation. Moreover, under noncolonized condition, overexpression of CBX1 reduced the root length of L. japonicus but increased the size of root system and shoot length, whereas cbx1 mutant reduced the root size and shoot length, but not effect on root length. In addition, cbx1 altered activity of monolignol biosynthetic gene and increased lignin levels. Collectively, these data indicated that CBX1 is a positive regulator of symbiotic activity and plays roles in the growth of L. japonicus.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Bago B, Shachar-Hill Y (2000) Carbon metabolism and transport in arbuscular mycorrhizas. Plant Physiol 124:949–958

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Boerjan W, Ralph J, Baucher M (2003) Lignin biosynthesis. Annu Rev Plant Biol 54:519–546

    Article  CAS  PubMed  Google Scholar 

  • Brundrett MC, Piché Y, Peterson RL (1984) A new method for observing the morphology of vesicular–arbuscular mycorrhizae. Can J Bot 62:2128–2134

    Article  Google Scholar 

  • Cass CL, Peraldi A, Dowd PF, Mottiar Y, Santoro N, Karlen SD, Bukhman YV, Foster CE, Thrower N, Bruno LC (2015) Effects of PHENYLALANINE AMMONIA LYASE (PAL) knockdown on cell wall composition, biomass digestibility, and biotic and abiotic stress responses in Brachypodium. J Exp Bot 66:4317–4335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Chen AQ, Gu MA, Sun SB, Zhu LL, Hong SA, Xu GH (2011) Identification of two conserved cis-acting elements, MYCS and P1BS, involved in the regulation of mycorrhiza-activated phosphate transporters in eudicot species. New Phytol 189:1157–1169

    Article  CAS  PubMed  Google Scholar 

  • Chen Y, Li F, Tian L, Huang M, Deng R, Li X, Chen W, Wu P, Li M, Jiang H (2017) The phenylalanine ammonia-lyase gene LjPAL1 is involved in plant defense responses to pathogens and plays diverse roles in Lotusjaponicus-rhizobium symbioses. Mol Plant Microbe In 30:739–753

    Article  CAS  Google Scholar 

  • Floss DS, Gomez SK, Park HJ, Maclean AM, Müller LM, Bhattarai KK, Lévesque-Tremblay V, Maldonado-Mendoza IE, Harrison MJ (2017) A transcriptional program for arbuscule degeneration during AM symbiosis is regulated by MYB1. Curr Biol 27:1206–1212

    Article  CAS  PubMed  Google Scholar 

  • Frei M (2013) Lignin: characterization of a multifaceted crop component. Sci World J 2013:436517

    Article  CAS  Google Scholar 

  • Gallego-Giraldo L, Bhattarai K, Pislariu CI, Nakashima J, Jikumaru Y, Kamiya Y, Udvardi MK, Monteros MJ, Dixon RA (2014) Lignin modification leads to increased nodule numbers in alfalfa. Plant Physiol 164:1139–1150

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Genre A, Chabaud M, Faccio A, Barker DG, Bonfante P (2008) Prepenetration apparatus assembly precedes and predicts the colonization patterns of arbuscular mycorrhizal fungi within the root cortex of both Medicago truncatula and Daucus carota. Plant Cell 20:1407–1420

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goodin MM, Dietzgen RG, Schichnes D, Ruzin S, Jackson AO (2010) pGD vectors: versatile tools for the expression of green and red fluorescent protein fusions in agroinfiltrated plant leaves. Plant J 31:375–383

    Article  Google Scholar 

  • Gutjahr C, Parniske M (2013) Cell and developmental biology of arbuscular mycorrhiza symbiosis. Annu Rev Cell Dev Biol 29:593–617

    Article  CAS  PubMed  Google Scholar 

  • Huang J, Gu M, Lai Z, Fan B, Shi K, Zhou Y, Yu J, Chen Z (2010) Functional analysis of the arabidopsis pal gene family in plant growth, development, and response to environmental stress. Plant Physiol 153:1526–1538

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Javot H, Penmetsa RV, Terzaghi N, Cook DR, Harrison MJ (2007) A Medicago truncatula phosphate transporter indispensable for the arbuscular mycorrhizal symbiosis. Proc Natl Acad Sci USA 104:1720–1725

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Jiang Y, Wang W, Xie Q, Liu N, Liu L, Wang D, Zhang X, Yang C, Chen X, Tang D (2017) Plants transfer lipids to sustain colonization by mutualistic mycorrhizal and parasitic fungi. Science 356:1172–1175

    Article  CAS  PubMed  Google Scholar 

  • Joseph GD, Yoh S, Yusuke I, Mie K, Emilyn GD, Setsuko M, Motoaki S, Kazuo S, Kazuko Y-S (2003) OsDREB genes in rice, Oryza sativa L., encode transcription activators that function in drought-, high-salt- and cold-responsive gene expression. Plant J 33:751–763

    Article  Google Scholar 

  • Kamel L, Keller-Pearson M, Roux C, Ane JM (2017) Biology and evolution of arbuscular mycorrhizal symbiosis in the light of genomics. New Phytol 213:531–536

    Article  CAS  PubMed  Google Scholar 

  • Kapat A, Dey S (2000) An alternative approach to the detection of lignin: a note on the application of ELISA using polyclonal antibodies. Bioprocess Eng 22:75–77

    Article  CAS  Google Scholar 

  • Karlova R, Rosin FM, Busscherlange J, Parapunova V, Do PT, Fernie AR, Fraser PD, Baxter C, Angenent GC, de Maagd RA (2011) Transcriptome and metabolite profiling show that APETALA2a is a major regulator of tomato fruit ripening. Plant Cell 23:923–941

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Keymer A, Pimprikar P, Wewer V, Huber C, Brands M, Bucerius SL, Delaux PM, Klingl V, Röpenack-Lahaye EV, Wang TL (2017) Lipid transfer from plants to arbuscular mycorrhiza fungi. eFife 6:e29107

  • Liao DH, Chen X, Chen AQ, Wang HM, Liu JJ, Liu JL, Gu M, Sun SB, Xu GH (2015) The characterization of six auxin-induced tomato GH3 genes uncovers a member, SlGH3.4, strongly responsive to arbuscular mycorrhizal symbiosis. Plant Cell Physiol 56:674–687

    Article  CAS  PubMed  Google Scholar 

  • Liu F, Xu Y, Han G, Wang W, Li X, Cheng B (2018) Identification and functional characterization of a maize phosphate transporter induced by mycorrhiza formation. Plant Cell Physiol 59:1683–1694

    Article  CAS  PubMed  Google Scholar 

  • Luginbuehl LH, Oldroyd GED (2017) Understanding the arbuscule at the heart of endomycorrhizal symbioses in plants. Curr Biol 27:R952–R963

    Article  CAS  PubMed  Google Scholar 

  • Luginbuehl LH, Menard GN, Kurup S, Van EH, Radhakrishnan GV, Breakspear A, Ged O, Eastmond PJ (2017) Fatty acids in arbuscular mycorrhizal fungi are synthesized by the host plant. Science 356:1175

    Article  CAS  PubMed  Google Scholar 

  • Maclean AM, Bravo A, Harrison MJ (2017) Plant signaling and metabolic pathways enabling arbuscular mycorrhizal symbiosis. Plant Cell 29:2319–2335

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Maeo K, Tokuda T, Ayame A, Mitsui N, Kawai T, Tsukagoshi H, Ishiguro S, Nakamura K (2010) An AP2-type transcription factor, WRINKLED1, of Arabidopsis thaliana binds to the AW-box sequence conserved among proximal upstream regions of genes involved in fatty acid synthesis. Plant J 60:476–487

    Article  CAS  Google Scholar 

  • Martin K, Kopperud K, Chakrabarty R, Banerjee R, Brooks R, Goodin MM (2010) Transient expression in Nicotiana benthamiana fluorescent marker lines provides enhanced definition of protein localization, movement and interactions in planta. Plant J 59:150–162

    Article  CAS  Google Scholar 

  • Medina-Rivera A, Defrance M, Sand O, Herrmann C, Castro-Mondragon JA, Delerce J, Jaeger S, Blanchet C, Vincens P, Caron C, Staines DM, Contreras-Moreira B, Artufel M, Charbonnier-Khamvongsa L, Hernandez C, Thieffry D, Thomas-Chollier M, van Helden J (2015) RSAT 2015: regulatory sequence analysis tools. Nucleic Acids Res 43:W50–W56

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mun T, Bachmann A, Gupta V, Stougaard J, Andersen SU (2016) LotusBase: an integrated information portal for the model legume Lotus japonicus. Sci Rep 6:39447

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pudake RN, Mehta CM, Mohanta TK, Sharma S, Varma A, Sharma AK (2017) Expression of four phosphate transporter genes from Finger millet (Eleusinecoracana L.) in response to mycorrhizal colonization and Pi stress. Biotech 7:17

  • Rich MK, Schorderet M, Reinhardt D (2014) The role of the cell wall compartment in mutualistic symbioses of plants. Front Plant Sci 5:238

    Article  PubMed  PubMed Central  Google Scholar 

  • Riechmann JL, Heard J, Martin G, Reuber L, Keddie J, Adam L, Pineda O, Ratcliffe OJ, Samaha RR, Creelman R (2000) Arabidopsis transcription factors: genome-wide comparative analysis among eukaryotes. Science 290:2105–2110

    Article  CAS  PubMed  Google Scholar 

  • Roth R, Paszkowski U (2017) Plant carbon nourishment of arbuscular mycorrhizal fungi. Curr Opin Plant Biol 39:50–56

    Article  CAS  PubMed  Google Scholar 

  • Sasaki T, Suzaki T, Kawaguchi M (2013) Stable Transformation in Lotus japonicas. Bio-protocol 3:e796

    Article  Google Scholar 

  • Spatafora JW, Chang Y, Benny GL, Lazarus K, Smith ME, Berbee ML, Bonito G, Corradi N, Grigoriev I, Gryganskyi A (2016) A phylum-level phylogenetic classification of zygomycete fungi based on genome-scale data. Mycologia 108:1028–1046

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tamura K, Stecher G, Peterson D, Filipski A, Kumar S (2013) MEGA6: molecular evolutionary genetics analysis version 6.0. Mol Biol Evol 30:2725–2729

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tian H, Jia Y, Niu T, Yu Q, Ding Z (2014) The key players of the primary root growth and development also function in lateral roots in Arabidopsis. Plant Cell Rep 33:745–753

    Article  CAS  PubMed  Google Scholar 

  • Wang W, Shi J, Xie Q, Jiang Y, Yu N, Wang E (2017) Nutrient exchange and regulation in arbuscular mycorrhizal symbiosis. Mol Plant 10:1147–1158

    Article  CAS  PubMed  Google Scholar 

  • Whetten R, Sederoff R (1995) Lignin biosynthesis. Plant Cell 7:1001–1013

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xu Y, Liu F, Han G, Wang W, Zhu S, Li X (2017) Improvement of Lotus japonicus hairy root induction and development of a mycorrhizal symbiosis system. Appl Plant 6:e1141

    Article  Google Scholar 

  • Xue L, Cui HT, Buer B, Vijayakumar V, Delaux PM, Junkermann S, Bucher M (2015) Network of GRAS transcription factors involved in the control of arbuscule development in Lotus japonicus. Plant Physiol 167:854

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xue L, Klinnawee L, Zhou Y, Saridis G, Vijayakumar V, Brands M, Dörmann P, Gigolashvili T, Turck F, Bucher M (2018) AP2 transcription factor CBX1 with a specific function in symbiotic exchange of nutrients in mycorrhizal Lotusjaponicus. Proc Natl Acad Sci 115:E9239–E9246

    Article  PubMed  CAS  PubMed Central  Google Scholar 

  • Yang SY, Paszkowski U (2011) Phosphate import at the arbuscule: just a nutrient? Mol Plant Microbe In 24:1296–1299

    Article  CAS  Google Scholar 

  • Yang SY, Grønlund M, Jakobsen I, Grotemeyer MS, Rentsch D, Miyao A, Hirochika H, Kumar CS, Sundaresan V, Salamin N, Catausan S, Mattes N, Heuer S, Paszkowski U (2012) Nonredundant regulation of rice arbuscular mycorrhizal symbiosis by two members of the gene family. Plant Cell 24:4236–4251

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang J, Roy A, Zhang Y (2013a) BioLiP: a semi-manually curated database for biologically relevant ligand-protein interactions. Nucleic Acids Res 41:1096–1103

    Article  CAS  Google Scholar 

  • Yang J, Roy A, Zhang Y (2013b) Protein–ligand binding site recognition using complementary binding-specific substructure comparison and sequence profile alignment. Bioinformatics 29:2588–2595

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang JY, Broeckling CD, Blancaflor EB, Sledge MK, Sumner LW, Wang ZY (2010) Overexpression of WXP1, a putative Medicago truncatula AP2 domain-containing transcription factor gene, increases cuticular wax accumulation and enhances drought tolerance in transgenic alfalfa (Medicagosativa). Plant J Cell Mol Biol 42:689–707

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was supported by the National Natural Science Foundation of China (31870415), China Postdoctoral Science Foundation (2018M632520) and Graduate Innovation Fund of Anhui Agricultural University (2018yjs-40).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xiaoyu Li.

Ethics declarations

Conflict of interest

The authors have no conflicts of interest to declare.

Additional information

Communicated by Youn-Il Park.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Construct of the CBX1 promoter-fused GUS reporter gene (JPG 26 kb)

299_2019_2501_MOESM2_ESM.tif

LORE1a insertion sites in cbx1-4 mutant. CBX1 gene structure is shown, and LORE1a insertion sites are illustrated in mutants cbx1-4. TAA indicates the stop codon. Black arrows indicate the LORE1a transposon sequence. Dark gray blocks represent the 5’ UTR and 3’ UTR, light gray blocks represent the exons and black lines between exons represent introns (TIF 93 kb)

Primers used in this study (XLSX 9 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, F., Xu, Y., Wang, H. et al. APETALA 2 transcription factor CBX1 is a regulator of mycorrhizal symbiosis and growth of Lotus japonicus. Plant Cell Rep 39, 445–455 (2020). https://doi.org/10.1007/s00299-019-02501-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00299-019-02501-2

Keywords

Navigation