Skip to main content
Log in

Recent advances and applications in LC-HRMS for food and plant natural products: a critical review

  • Review
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

In the last decade, interest in food and plant natural products (FPNPs) has been growing due to their medical applications. Liquid chromatography-high-resolution mass spectrometry (LC-HRMS) is the key to obtaining pure natural products for structure elucidation as well as for development into therapeutic agents. In this review, we will provide a summary of recent advances and applications related to the analysis of the most common FPNPs in studied matrices, in particular, polyphenols, peptides, carotenoids, alkaloids, terpenoids and glucosinolates by LC-HRMS. This paper also reviews the critical revision of this topic covering the works published in the last 4 years (early 2016–mid 2019). In addition, it gives an overview of the current state of various screening strategies (e.g. targeted, suspected, untargeted or retrospective) with discussion on future directions and perspectives of this technique.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

Abbreviations

BAs:

Berberine alkaloids

DAD:

Diode array detector

FPNPs:

Food and plant natural products

GOTCABs:

Glucuronide oleanane-type triterpenoid carboxylic acid 3,28-bidesmosides

HCD:

High-energy collisional

HILIC:

Hydrophilic interaction liquid chromatography

HPLC:

High-performance liquid chromatography

HRMS:

High-resolution mass spectrometry

LC:

Liquid chromatography

LC-HRMS:

Liquid chromatography-high-resolution mass spectrometry

LC-LRMS:

Liquid chromatography-low-resolution mass spectrometry

MS:

Mass spectrometry

MS/MS:

Tandem mass spectrometry

Nano LC:

Nano-liquid chromatography

PAC:

Phellodendri Amurensis cortex

PAs:

Pyrrolizidine alkaloids

Q:

Quadrupole

RE:

Recovery

RP:

Reversed-phase

TAs:

Tropane alkaloids

TOF:

Time-of-flight

UHPLC:

Ultra-high-performance liquid chromatography

UPLC:

Ultra-performance liquid chromatography

References

  1. Ren Q, Xing H, Bao Z, Su B, Yang Q, Yang Y, et al. Recent advances in separation of bioactive natural products. Chin J Chem Eng. 2013;21(9):937–58. https://doi.org/10.1016/S1004-9541(13)60560-1.

    Article  CAS  Google Scholar 

  2. Chen C, Yang FQ, Zuo HL, Song YL, Xia ZN, Xiao W. Applications of biochromatography in the screening of bioactive natural products. J Chromatogr Sci. 2013;51:780–90.

    Article  CAS  Google Scholar 

  3. La Barbera G, Capriotti AL, Cavaliere C, Montone CM, Piovesana S, Samperi R, et al. Liquid chromatography-high resolution mass spectrometry for the analysis of phytochemicals in vegetal-derived food and beverages. Food Res Int. 2017;100:28–52.

    Article  Google Scholar 

  4. Guo J, Lin H, Wang J, Lin Y, Zhang T, Jiang Z. Recent advances in bio-affinity chromatography for screening bioactive compounds from natural products. J Pharm Biomed Anal. 2019;165:182–97.

    Article  CAS  Google Scholar 

  5. Zhong JJ. Plant secondary metabolites. In: Comprehensive Biotechnology, Second Edition; 2011.

  6. Cavaliere C, Capriotti AL, La Barbera G, Montone CM, Piovesana S, Lagana A. Liquid chromatographic strategies for separation of bioactive compounds in food matrices. Molecules. 2018;23:3091.

    Article  Google Scholar 

  7. Wolfender JL, Marti G, Thomas A, Bertrand S. Current approaches and challenges for the metabolite profiling of complex natural extracts. J Chromatogr A. 2015;1382:136–64.

    Article  CAS  Google Scholar 

  8. Wilson SR, Vehus T, Berg HS, Lundanes E. Nano-LC in proteomics: recent advances and approaches. Bioanalysis. 2015;7(14):1799–815. https://doi.org/10.4155/bio.15.92.

    Article  CAS  PubMed  Google Scholar 

  9. Chetwynd AJ, David A. A review of nanoscale LC-ESI for metabolomics and its potential to enhance the metabolome coverage. Talanta. 2018;182:380–90.

    Article  CAS  Google Scholar 

  10. Andjelković U, Gavrović-Jankulović M, Martinović T, Josić D. Omics methods as a tool for investigation of food allergies. TrAC Trends Anal Chem. 2017;96:107–15.

    Article  Google Scholar 

  11. Fanali C, Dugo L, Dugo P, Mondello L. Capillary-liquid chromatography (CLC) and nano-LC in food analysis. TrAC Trends Anal Chem. 2013;52:226–38. https://doi.org/10.1016/j.trac.2013.05.021.

    Article  CAS  Google Scholar 

  12. Izumi Y, Okazawa A, Bamba T, Kobayashi A, Fukusaki E. Development of a method for comprehensive and quantitative analysis of plant hormones by highly sensitive nanoflow liquid chromatography-electrospray ionization-ion trap mass spectrometry. Anal Chim Acta. 2009;648:215–25. https://doi.org/10.1016/j.aca.2009.07.001.

    Article  CAS  PubMed  Google Scholar 

  13. González-Teuber M, Pozo MJ, Muck A, Svatos A, Adame-Álvarez RM, Heil M. Glucanases and Chitinases as causal agents in the protection of Acacia Extrafloral nectar from infestation by Phytopathogens. Plant Physiol. 2010;152:1705–15. https://doi.org/10.1104/pp.109.148478.

    Article  CAS  PubMed  Google Scholar 

  14. Zenezini Chiozzi R, Capriotti AL, Cavaliere C, La Barbera G, Piovesana S, Laganà A. Identification of three novel angiotensin-converting enzyme inhibitory peptides derived from cauliflower by-products by multidimensional liquid chromatography and bioinformatics. J Funct Foods. 2016;27:262–73. https://doi.org/10.1016/j.jff.2016.09.010.

    Article  CAS  Google Scholar 

  15. Kind T, Fiehn O. Strategies for dereplication of natural compounds using high-resolution tandem mass spectrometry. Phytochem Lett. 2017;21:313–9.

    Article  CAS  Google Scholar 

  16. Alvarez-Rivear G, Ballesteros-Vivas D, Parada-Alfonsa F, Ibanez E, Cifuentes A. Recent applications of high resolution mass spectrometry for the characterization of plant natural products. TrAC Trends Anal Chem. 2019;112:87–101.

    Article  Google Scholar 

  17. Tasnuva ST, Sahena F, Qamar UA, Kashif G, Juliana J, Zaidul ISM. Mimosa pudica L.: a comparative study via in vitro analysis and GC Q-TOF MS profiling on conventional and supercritical fluid extraction using food grade ethanol. Indian J Nat Prod Resour. 2017;8:54–62.

    CAS  Google Scholar 

  18. Marshall AG, Hendrickson CL. High-resolution mass spectrometers. Annu Rev Anal Chem. 2008;1:579–99. https://doi.org/10.1146/annurev.anchem.1.031207.112945.

    Article  CAS  Google Scholar 

  19. Makarov A, Scigelova M. Coupling liquid chromatography to Orbitrap mass spectrometry. J Chromatogr A. 2010;1217:3938–45.

    Article  CAS  Google Scholar 

  20. Rodríguez-Carrasco Y, Gaspari A, Graziani G, Santini A, Ritieni A. Fast analysis of polyphenols and alkaloids in cocoa-based products by ultra-high performance liquid chromatography and Orbitrap high resolution mass spectrometry (UHPLC-Q-Orbitrap-MS/MS). Food Res Int. 2018;111:229–36. https://doi.org/10.1016/j.foodres.2018.05.032.

    Article  CAS  PubMed  Google Scholar 

  21. Li Y, Zhang T, Zhang X, Xu H, Liu C. Chemical fingerprint analysis of Phellodendri Amurensis cortex by ultra performance LC/Q-TOF-MS methods combined with chemometrics. J Sep Sci. 2010;33:3347–53. https://doi.org/10.1002/jssc.201000426.

    Article  CAS  PubMed  Google Scholar 

  22. Aydoğan C. Nanoscale separations based on LC and CE for food analysis: a review TrAC - trends anal. Chem. 2019;121:115693. https://doi.org/10.1016/j.trac.2019.115693.

    Article  CAS  Google Scholar 

  23. Kokotou MG, Revelou PK, Pappas C, Constantinou-Kokotou V. High resolution mass spectrometry studies of sulforaphane and indole-3-carbinol in broccoli. Food Chem. 2017:566–37. https://doi.org/10.1016/j.foodchem.2017.05.139.

  24. Fanali S, Haddad PR, Poole CF, Schoenmakers P, Lloyd D. Liquid Chromatography: Fundamentals and Instrumentation; 2013.

  25. Meyer VR. Practical high-performance liquid chromatography: Fourth edition; 2006.

  26. Snyder LR, Kirkland JJ, Dolan JW. Introduction to modern liquid chromatography; 2010.

  27. Fanali C, Dugo L, Mondello L. Advances in chromatographic techniques for food authenticity testing. In: Advances in Food Authenticity Testing; 2016.

  28. Blue LE, Franklin EG, Godinho JM, Grinias JP, Grinias KM, Lunn DB, et al. Recent advances in capillary ultrahigh pressure liquid chromatography. J Chromatogr A. 2017;1523:17–39.

    Article  CAS  Google Scholar 

  29. Xiang P, Yang Y, Zhao Z, Chen M, Liu S. Ultrafast Gradient Separation with Narrow Open Tubular Liquid Chromatography. Anal Chem. 2019;91(16):10738–43. https://doi.org/10.1021/acs.analchem.9b02190.

    Article  CAS  PubMed  Google Scholar 

  30. Wahab MF, Wimalasinghe RM, Wang Y, Barhate CL, Patel DC, Armstrong DW. Salient Sub-Second Separations. Anal Chem. 2016;88(17):8821–6. https://doi.org/10.1021/acs.analchem.6b02260.

    Article  CAS  PubMed  Google Scholar 

  31. Patel DC, Wahab MF, O’Haver TC, Armstrong DW. Separations at the Speed of Sensors. Anal Chem. 2018;90(5):3349–56. https://doi.org/10.1021/acs.analchem.7b04944.

    Article  CAS  PubMed  Google Scholar 

  32. Zendong Z, McCarron P, Herrenknecht C, Sibat M, Amzil Z, Cole RB, et al. High resolution mass spectrometry for quantitative analysis and untargeted screening of algal toxins in mussels and passive samplers. J Chromatogr A. 2015;1416:10–21. https://doi.org/10.1016/j.chroma.2015.08.064.

    Article  CAS  PubMed  Google Scholar 

  33. Donato P, Cacciola F, Tranchida PQ, Dugo P, Mondello L. Mass spectrometry detection in comprehensive liquid chromatography: basic concepts, instrumental aspects, applications and trends. Mass Spectrom Rev. 2012;31(5):523–59. https://doi.org/10.1002/mas.20353.

    Article  CAS  PubMed  Google Scholar 

  34. Donato P, Cacciola F, Dugo P, Mondello L. The beauty and the health: comprehensive LC x LC/PDA/IT-TOF of pigments in food. Food Sci Technol. 2011;25:52–3.

    Google Scholar 

  35. Forcisi S, Moritz F, Kanawati B, Tziotis D, Lehmann R, Schmitt-Kopplin P. Liquid chromatography-mass spectrometry in metabolomics research: Mass analyzers in ultra high pressure liquid chromatography coupling. J Chromatogr A. 2013;1292:51–65. https://doi.org/10.1016/j.chroma.2013.04.017.

    Article  CAS  PubMed  Google Scholar 

  36. Picó Y. Advanced mass spectrometry. In: Comprehensive Analytical Chemistry; 2015.

  37. Troise AD, Ferracane R, Palermo M, Fogliano V. Targeted metabolite profile of food bioactive compounds by Orbitrap high resolution mass spectrometry: the “FancyTiles” approach. Food Res Int. 2014;63:139–46. https://doi.org/10.1016/j.foodres.2014.01.001.

    Article  CAS  Google Scholar 

  38. Abu-Reidah IM, Arráez-Román D, Quirantes-Piné R, Fernández-Arroyo S, Segura-Carretero A, Fernández-Gutiérrez A. HPLC-ESI-Q-TOF-MS for a comprehensive characterization of bioactive phenolic compounds in cucumber whole fruit extract. Food Res Int. 2012. https://doi.org/10.1016/j.foodres.2011.11.026.

  39. Cappellin L, Biasioli F, Granitto PM, Schuhfried E, Soukoulis C, Costa F, et al. On data analysis in PTR-TOF-MS: from raw spectra to data mining. Sensors Actuators B Chem. 2011;46:108–17. https://doi.org/10.1016/j.snb.2010.11.044.

    Article  CAS  Google Scholar 

  40. Pilolli R, De Angelis E, Godula M, Visconti A, Monaci L. Orbitrap™ monostage MS versus hybrid linear ion trap MS: application to multi-allergen screening in wine. J Mass Spectrom. 2014;49:1254–63. https://doi.org/10.1002/jms.3453.

    Article  CAS  PubMed  Google Scholar 

  41. Mahomoodally MF, Zengin G, Zheleva-Dimitrova D, Mollica A, Stefanucci A, Sinan KI, et al. Metabolomics profiling, bio-pharmaceutical properties of Hypericum lanuginosum extracts by in vitro and in silico approaches. Ind Crop Prod. 2019;133:373–82. https://doi.org/10.1016/j.indcrop.2019.03.033.

    Article  CAS  Google Scholar 

  42. Alves FE, Silva LM, Lima Y, Ribeiro P, Silva E, Zocolo G, et al. Metabolomic Variability of Different Genotypes of Cashew by LC-Ms and Correlation with Near-Infrared Spectroscopy as a Tool for Fast Phenotyping. Metabolites. 2019;9:121. https://doi.org/10.3390/metabo9060121.

    Article  CAS  Google Scholar 

  43. Marchetti L, Pellati F, Graziosi R, Brighenti V, Pinetti D, Bertelli D. Identification and determination of bioactive phenylpropanoid glycosides of Aloysia polystachya (Griseb. Et Moldenke) by HPLC-MS. J Pharm Biomed Anal. 2019;166:364–70. https://doi.org/10.1016/j.jpba.2019.01.033.

    Article  CAS  PubMed  Google Scholar 

  44. Zhu XY, Liu JZ, Dong ZH, Feng F, Liu WY. Identification and screening of cardiac glycosides in Streptocaulon griffithii using an integrated data mining strategy based on high resolution mass spectrometry. Chin J Nat Med. 2018;16:546–60. https://doi.org/10.1016/S1875-5364(18)30090-6.

    Article  PubMed  Google Scholar 

  45. Ballesteros-Vivas D, Alvarez-Rivera G, Ibánez E, Parada-Alfonso F, Cifuentes A. Integrated strategy for the extraction and profiling of bioactive metabolites from Passiflora mollissima seeds combining pressurized-liquid extraction and gas/liquid chromatography–high resolution mass spectrometry. J Chromatogr A. 2019;1595:144–57. https://doi.org/10.1016/j.chroma.2019.02.031.

    Article  CAS  PubMed  Google Scholar 

  46. Ballesteros-Vivas D, Álvarez-Rivera G, Ibáñez E, Parada-Alfonso F, Cifuentes A. A multi-analytical platform based on pressurized-liquid extraction, in vitro assays and liquid chromatography/gas chromatography coupled to high resolution mass spectrometry for food by-products valorisation. Part 2: characterization of bioactive compound. J Chromatogr A. 2019;1584:144–54. https://doi.org/10.1016/j.chroma.2018.11.054.

    Article  CAS  PubMed  Google Scholar 

  47. Wu T, Liu C, Huang Y, Li S, Wang Y. Simultaneous screening and isolation of activated constituents from Puerariae Flos by ultrafiltration with liquid chromatography and mass spectrometry combined with high-speed counter-current chromatography. J Sep Sci. 2018;41:4458–68. https://doi.org/10.1002/jssc.201800691.

    Article  CAS  PubMed  Google Scholar 

  48. Dickson L, Tenon M, Svilar L, Fança-Berthon P, Lugan R, Martin JC, et al. Main human urinary metabolites after genipap (Genipa americana L.) juice intake. Nutrients. 2018;10:1155. https://doi.org/10.3390/nu10091155.

    Article  CAS  PubMed Central  Google Scholar 

  49. Cerulli A, Napolitano A, Masullo M, Pizza C, Piacente S. LC-ESI/LTQOrbitrap/MS/MS n analysis reveals Diarylheptanoids and Flavonol O -glycosides in fresh and roasted hazelnut ( Corylus avellana cultivar “Tonda di Giffoni”). Nat Prod Commun. 2018;13:1123–6. https://doi.org/10.1177/1934578x1801300906.

    Article  CAS  Google Scholar 

  50. Oosthuizen D, Goosen N, Stander M, Ibrahim A, Pedavoah M-M, Usman G, et al. Solvent extraction of Polyphenolics from the indigenous African fruit Ximenia caffra and characterization by LC-HRMS. Antioxidants. 2018;7:103. https://doi.org/10.3390/antiox7080103.

    Article  CAS  PubMed Central  Google Scholar 

  51. De Santiago E, Pereira-Caro G, Moreno-Rojas JM, Cid C, De Peña MP. Digestibility of (poly)phenols and antioxidant activity in raw and cooked Cactus cladodes (Opuntia ficus-indica). J Agric Food Chem. 2018;6:5832–44. https://doi.org/10.1021/acs.jafc.8b01167.

    Article  CAS  Google Scholar 

  52. Ren D, Ran L, Yang C, Xu M, Yi L. Integrated strategy for identifying minor components in complex samples combining mass defect, diagnostic ions and neutral loss information based on ultra-performance liquid chromatography-high resolution mass spectrometry platform: folium Artemisiae argy. J Chromatogr A. 2018;1550:35–44. https://doi.org/10.1016/j.chroma.2018.03.044.

    Article  CAS  PubMed  Google Scholar 

  53. Quispe C, Villalobos M, Bórquez J, Simirgiotis M. Chemical composition and antioxidant activity of Aloe vera from the Pica oasis (Tarapacá, Chile) by UHPLC-Q/Orbitrap/MS/MS. J Chemother. 2018;6123850:1–12. https://doi.org/10.1155/2018/6123850.

    Article  CAS  Google Scholar 

  54. Rufatto LC, Luchtenberg P, Garcia C, Thomassigny C, Bouttier S, Henriques JAP, et al. Brazilian red propolis: chemical composition and antibacterial activity determined using bioguided fractionation. Microbiol Res. 2018;214:74–82. https://doi.org/10.1016/j.micres.2018.05.003.

    Article  CAS  PubMed  Google Scholar 

  55. Dong N, Alena N, Klára S, Jiří H, Huong P, Jitka V, et al. Antidiabetic compounds in stem juice from banana grown in natural and greenhouse. Czech J Food Sci. 2017;35:407–13. https://doi.org/10.17221/172/2017-cjfs.

    Article  CAS  Google Scholar 

  56. Sasot G, Martínez-Huélamo M, Vallverdú-Queralt A, Mercader-Martí M, Estruch R, Lamuela-Raventós RM. Identification of phenolic metabolites in human urine after the intake of a functional food made from grape extract by a high resolution LTQ-Orbitrap-MS approach. Food Res Int. 2017;100:435–44. https://doi.org/10.1016/j.foodres.2017.01.020.

    Article  CAS  PubMed  Google Scholar 

  57. Tang KSC, Konczak I, Zhao J. Identification and quantification of phenolics in Australian native mint (Mentha australis R. Br.). Food Chem. 2016;192:698–705. https://doi.org/10.1016/j.foodchem.2015.07.032.

    Article  CAS  PubMed  Google Scholar 

  58. Tao Y, Wang Y, Pan M, Zhong S, Wu Y, Yang R, et al. Combined ANFIS and numerical methods to simulate ultrasound-assisted extraction of phenolics from chokeberry cultivated in China and analysis of phenolic composition. Sep Purif Technol. 2017;178:178–88. https://doi.org/10.1016/j.seppur.2017.01.012.

    Article  CAS  Google Scholar 

  59. Zenezini Chiozzi R, Capriotti AL, Cavaliere C, La Barbera G, Piovesana S, Samperi R, et al. Purification and identification of endogenous antioxidant and ACE-inhibitory peptides from donkey milk by multidimensional liquid chromatography and nanoHPLC-high resolution mass spectrometry. Anal Bioanal Chem. 2016;408:5657–66. https://doi.org/10.1007/s00216-016-9672-z.

    Article  CAS  PubMed  Google Scholar 

  60. Montone CM, Capriotti AL, Cerrato A, Antonelli M, La Barbera G, Piovesana S, Laganà A, Cavaliere C. Identification of bioactive short peptides in cow milk by high-performance liquid chromatography on C18 and porous graphitic carbon coupled to high-resolution mass spectrometry. Anal Bioanal Chem. 2019;3395–3404. doi: https://doi.org/10.1007/s00216-019-01815-0

  61. Masotti F, Cattaneo S, Stuknytė M, De Noni I. Assessment of casein phosphopeptide profile in in vitro digestates of Trentingrana PDO cheese. Eur Food Res Technol. 2018;244:513–21. https://doi.org/10.1007/s00217-017-2970-7.

    Article  CAS  Google Scholar 

  62. Basilicata MG, Pepe G, Sommella E, Ostacolo C, Manfra M, Sosto G, et al. Peptidome profiles and bioactivity elucidation of buffalo-milk dairy products after gastrointestinal digestion. Food Res Int. 2018;105:1003–10. https://doi.org/10.1016/j.foodres.2017.12.038.

    Article  CAS  PubMed  Google Scholar 

  63. Shih Y-H, Chen F-A, Wang LF, Hsu J-L. Discovery and Study of Novel Antihypertensive Peptides Derived from Cassia obtusifolia Seeds. J Agric Food Chem. 2019;67:78–10. https://doi.org/10.1021/acs.jafc.9b01922.

    Article  CAS  Google Scholar 

  64. Giuffrida D, Donato P, Dugo P, Mondello L. Recent Analytical Techniques Advances in the Carotenoids and Their Derivatives Determination in Various Matrixes. J Agric Food Chem. 2018;(66) 3302-3307

  65. Mercadante AZ, Rodrigues DB, Petry FC, Mariutti LRB. Carotenoid esters in foods - A review and practical directions on analysis and occurrence. Food Res Int. 2017;99:830–50. https://doi.org/10.1016/j.foodres.2016.12.018.

    Article  CAS  PubMed  Google Scholar 

  66. Rivera SM, Christou P, Canela-Garayoa R. Identification of carotenoids using mass spectrometry. Mass Spectrom. Rev. 2014;33:353–72.

    Article  CAS  Google Scholar 

  67. Mi J, Jia KP, Balakrishna A, Wang JY, Al-Babili S. An LC-MS profiling method reveals a route for apocarotene glycosylation and shows its induction by high light stress in Arabidopsis. Analyst. 2019;144:1197–204. https://doi.org/10.1039/c8an02143k.

    Article  CAS  PubMed  Google Scholar 

  68. Wang L, Liu S, Xing J, Liu Z, Song F. Characterization of interaction property of multi-components in gardenia Jasminoides with aldose Reductase by microdialysis combined with liquid chromatography coupled to mass spectrometry. Rapid Commun Mass Spectrom. 2016;30:87–94. https://doi.org/10.1002/rcm.7620.

    Article  CAS  PubMed  Google Scholar 

  69. Dusemund B, Schaefer B, Lampen A. Plant Alkaloids. In: Encyclopedia of Food Chemistry 2018

  70. Griffin CT, O’Mahony J, Danaher M, Furey A. Liquid Chromatography Tandem Mass Spectrometry Detection of Targeted Pyrrolizidine Alkaloids in Honeys Purchased within Ireland. Food Anal Methods. 2015;8:18–31. https://doi.org/10.1007/s12161-014-9855-1.

    Article  Google Scholar 

  71. Edgar JA, Molyneux RJ, Colegate SM. Pyrrolizidine alkaloids: Potential role in the etiology of cancers, pulmonary hypertension, congenital anomalies, and liver disease. Chem Res Toxicol. 2015;(28) 4-20

  72. Zhou M, Ma X, Sun J, Ding G, Cui Q, Miao Y, Hou Y, Jiang M, Bai G. Active fragments-guided drug discovery and design of selective tropane alkaloids using ultra-high performance liquid chromatography-quadrupole time-of-flight tandem mass spectrometry coupled with virtual calculation and biological evaluation. Anal Bioanal Chem. 2017; 409: doi: https://doi.org/10.1007/s00216-016-0043-6

  73. Romera-Torres A, Romero-González R, Martínez Vidal JL, Garrido Frenich A. Analysis of calystegines in tomato-based products by liquid chromatography–Orbitrap mass spectrometry. J Chromatogr A. 2018;1576:51–7. https://doi.org/10.1016/j.chroma.2018.09.030.

    Article  CAS  PubMed  Google Scholar 

  74. Romera-Torres A, Romero-González R, Martínez Vidal JL, Garrido Frenich A. Simultaneous analysis of tropane alkaloids in teas and herbal teas by liquid chromatography coupled to high-resolution mass spectrometry (Orbitrap). J Sep Sci. 2018;41:1938–46. https://doi.org/10.1002/jssc.201701485.

    Article  CAS  PubMed  Google Scholar 

  75. Nardin T, Piasentier E, Barnaba C, Larcher R. Targeted and untargeted profiling of alkaloids in herbal extracts using online solid-phase extraction and high-resolution mass spectrometry (Q-Orbitrap). J Mass Spectrom. 2016;51:729–41. https://doi.org/10.1002/jms.3838.

    Article  CAS  PubMed  Google Scholar 

  76. Li Q, Guan H, Wang X, He Y, Sun H, Tan W, et al. Fingerprint–efficacy study of the quaternary alkaloids in Corydalis yanhusuo. J Ethnopharmacol. 2017;207:108–17. https://doi.org/10.1016/j.jep.2017.06.036.

    Article  CAS  PubMed  Google Scholar 

  77. Pereira MN, Justino AB, Martins MM, Peixoto LG, Vilela DD, Santos PS, et al. Stephalagine, an alkaloid with pancreatic lipase inhibitory activity isolated from the fruit peel of Annona crassiflora Mart. Ind Crops Prod. 2017;97:324–9. https://doi.org/10.1016/j.indcrop.2016.12.038.

    Article  CAS  Google Scholar 

  78. Cabral RSA, Allard PM, Marcourt L, Young MCM, Queiroz EF, Wolfender JL. Targeted Isolation of Indolopyridoquinazoline Alkaloids from Conchocarpus fontanesianus Based on Molecular Networks. J Nat Prod. 2016;79:2270–8. https://doi.org/10.1021/acs.jnatprod.6b00379.

    Article  CAS  PubMed  Google Scholar 

  79. Jiang Z, Kempinski C, Chappell J. Extraction and Analysis of Terpenes/Terpenoids. In: Current Protocols in Plant Biology. 2016; (1) 345-358

  80. Lü S, Zhao S, Zhao M, Guo Y, Li G, Yang B, Wang Q, Kuang H. Systematic screening and characterization of prototype constituents and metabolites of triterpenoid saponins of Caulopphyllum robustum Maxim using UPLC-LTQ Orbitrap MS after oral administration in rats. J Pharm Biomed Anal. 2019; 75–82. doi: https://doi.org/10.1016/j.jpba.2019.02.005

  81. Azizan KA, Ibrahim S, Ghani NHA, Nawawi MF. LC-MS based metabolomics analysis to identify potential allelochemicals in Wedelia trilobata. Rec Nat Prod. 2016;10:788–93.

    CAS  Google Scholar 

  82. Gevrenova R, Bardarov K, Bouguet-Bonnet S, Voynikov Y, Balabanova V, Zheleva-Dimitrova D, Henry M. A new liquid chromatography-high resolution Orbitrap mass spectrometry-based strategy to characterize Glucuronide Oleanane-type Triterpenoid Carboxylic Acid 3, 28-O-Bidesmosides (GOTCAB) saponins. A case study of Gypsophila glomerata Pall ex M. B. (Caryoph. J Pharm Biomed Anal. 2018; 567–581 . doi: https://doi.org/10.1016/j.jpba.2018.07.041

  83. Yang BY, Chen ZL, Liu Y, Kuang HX. Three new nortriterpenoids from the rattan stems of Schisandra chinensis. Phytochem Lett. 2018;24:145–9. https://doi.org/10.1016/j.phytol.2018.01.017.

    Article  CAS  Google Scholar 

  84. Bernal J, González D, Valverde S, Toribio L, Ares AM. Improved Separation of Intact Glucosinolates in Bee Pollen by Using Ultra-High-Performance Liquid Chromatography Coupled to Quadrupole Time-of-Flight Mass Spectrometry. Food Anal Methods. 2019;12:1170–8. https://doi.org/10.1007/s12161-019-01446-2.

    Article  Google Scholar 

  85. Keck AS, Finley JW. Cruciferous Vegetables: Cancer Protective Mechanisms of Glucosinolate Hydrolysis Products and Selenium. Integr. Cancer Ther. 2004; (3) 5-12

  86. Capriotti AL, Cavaliere C, La Barbera G, Montone CM, Piovesana S, Zenezini Chiozzi R, Laganà A. Chromatographic column evaluation for the untargeted profiling of glucosinolates in cauliflower by means of ultra-high performance liquid chromatography coupled to high resolution mass spectrometry. Talanta. 2018; 792–802 . doi: https://doi.org/10.1016/j.talanta.2017.12.019

  87. Shi H, Zhao Y, Sun J, Yu L (Lucy), Chen P. Chemical profiling of glucosinolates in cruciferous vegetables-based dietary supplements using ultra-high performance liquid chromatography coupled to tandem high resolution mass spectrometry. J Food Compos Anal. 2017; 67–72. doi: 10.1016/j.jfca.2017.01.018

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Cemil Aydoğan.

Ethics declarations

The author declares that there is no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Aydoğan, C. Recent advances and applications in LC-HRMS for food and plant natural products: a critical review. Anal Bioanal Chem 412, 1973–1991 (2020). https://doi.org/10.1007/s00216-019-02328-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02328-6

Keywords

Navigation