Skip to main content
Log in

Measurement of natural variation of neurotransmitter tissue content in red harvester ant brains among different colonies

  • Paper in Forefront
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

Colonies of the red harvester ant, Pogonomyrmex barbatus, regulate foraging activity based on food availability and local conditions. Colony variation in foraging behavior is thought to be linked to biogenic amine signaling and metabolism. Measurements of differences in neurotransmitters have not been made among ant colonies in a natural environment. Here, for the first time, we quantified tissue content of 4 biogenic amines (dopamine, serotonin, octopamine, and tyramine) in single forager brains from 9 red harvester ant colonies collected in the field. Capillary electrophoresis coupled with fast-scan cyclic voltammetry (CE-FSCV) was used to separate and detect the amines in individual ant brains. Low levels of biogenic amines were detected using field-amplified sample stacking by preparing a single brain tissue sample in acetonitrile and perchloric acid. The method provides low detection limits: 1 nM for dopamine, 2 nM for serotonin, 5 nM for octopamine, and 4 nM for tyramine. Overall, the content of dopamine (47 ± 9 pg/brain) was highest, followed by octopamine (36 ± 10 pg/brain), serotonin (20 ± 4 pg/brain), and tyramine (14 ± 3 pg/brain). Relative standard deviations were high, but there was less variation within a colony than among colonies, so the neurotransmitter content of each colony might change with environmental conditions. This study demonstrates that CE-FSCV is a useful method for investigating natural variation in neurotransmitter content in single ant brains and could be useful for future studies correlating tissue content with colony behavior such as foraging.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

Data availability

The data supports the finding of this study are available in figshare [DOI: https://doi.org/10.6084/m9.figshare.10023080].

References

  1. Barron AB, Søvik E, Cornish JL. The roles of dopamine and related compounds in reward-seeking behavior across animal phyla. Front Behav Neurosci. 2010;4:163.

    Article  PubMed  PubMed Central  Google Scholar 

  2. Gordon DM. The rewards of restraint in the collective regulation of foraging by harvester ant colonies. Nature. 2013;498(7452):91–3.

    Article  CAS  PubMed  Google Scholar 

  3. Jandt J, Gordon D. The behavioral ecology of variation in social insects. Curr Opin Insect Sci. 2016;15:40–4.

    Article  CAS  PubMed  Google Scholar 

  4. Friedman DA, Pilko A, Skowronska-Krawczyk D, Krasinska K, Parker JW, Hirsh J, et al. The role of dopamine in the collective regulation of foraging in harvester ants. iScience. 2018;8:283–94.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Friedman DA, Gordon DM. Ant genetics: reproductive physiology, worker morphology, and behavior. Annu Rev Neurosci. 2016;39(1):41–56.

    Article  CAS  PubMed  Google Scholar 

  6. Kamhi JF, Traniello JFA. Biogenic amines and collective organization in a superorganism: neuromodulation of social behavior in ants. Brain Behav Evol. 2013;82(4):220–36.

    Article  PubMed  Google Scholar 

  7. Kamhi JF, Arganda S, Moreau CS, Traniello JFA. Origins of aminergic regulation of behavior in complex insect social systems. Front Syst Neurosci. 2017;11:74.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Szczuka A, Korczyńska J, Wnuk A, Symonowicz B, Gonzalez Szwacka A, Mazurkiewicz P, Kostowski W, Godzinska. The effects of serotonin, dopamine, octopamine and tyramine on behavior of workers of the ant Formica polyctena during dyadic aggression tests. Acta Neurobiol Exp 2013;73(4):495–520.

  9. Entler BV, Cannon JT, Seid MA. Morphine addiction in ants: a new model for self-administration and neurochemical analysis. J Exp Biol. 2016;219(Pt 18):2865–9.

    Article  PubMed  Google Scholar 

  10. Wada-Katsumata A, Yamaoka R, Aonuma H. Social interactions influence dopamine and octopamine homeostasis in the brain of the ant Formica japonica. J Exp Biol. 2011;214(10):1707–13.

    Article  CAS  PubMed  Google Scholar 

  11. Cuvillier-Hot Alain Lenoir V. Biogenic amine levels, reproduction and social dominance in the queenless ant Streblognathus peetersi. Naturwissenschaften. 2006;93:149–53.

  12. Okada Y, Sasaki K, Miyazaki S, Shimoji H, Tsuji K, Miura T. Social dominance and reproductive differentiation mediated by dopaminergic signaling in a queenless ant. J Exp Biol. 2015;218(Pt 7):1091–8.

    Article  PubMed  Google Scholar 

  13. Fang H, Pajski ML, Ross AE, Venton BJ. Quantitation of dopamine, serotonin and adenosine content in a tissue punch from a brain slice using capillary electrophoresis with fast-scan cyclic voltammetry detection. Anal Methods. 2013;5(11):2704–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Fang H, Vickrey TL, Venton BJ. Analysis of biogenic amines in a single Drosophila larva brain by capillary electrophoresis with fast-scan cyclic voltammetry detection. Anal Chem. 2011;83(6).

  15. Denno ME, Privman E, Borman RP, Wolin DC, Venton BJ. Quantification of histamine and carcinine in Drosophila melanogaster tissues. ACS Chem Neurosci. 2016;7(3):407–14.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Denno ME, Privman E, Venton BJ. Analysis of neurotransmitter tissue content of drosophila melanogaster in different life stages. ACS Chem Neurosci. 2015;6(1):117–23.

    Article  CAS  PubMed  Google Scholar 

  17. Berglund EC, Kuklinski NJ, Karagunduz E, Ucar K, Hanrieder J, Ewing AG. Freeze-drying as sample preparation for micellar electrokinetic capillary chromatography-electrochemical separations of neurochemicals in Drosophila brains. Anal Chem. 2013;85(5):2841–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Kuklinski NJ, Berglund EC, Engelbrektsson J, Ewing AG. Biogenic amines in microdissected brain regions of Drosophila melanogaster measured with micellar electrokinetic capillary chromatography-electrochemical detection. Anal Chem. 2010;82(18):7729–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Omiatek DM, Santillo MF, Heien ML, Ewing AG. Hybrid capillary-microfluidic device for the separation, lysis, and electrochemical detection of vesicles. Anal Chem. 2009;81(6):2294–302.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Ream PJ, Suljak SW, Ewing AG, Han K-A. Micellar electrokinetic capillary chromatography- electrochemical detection for analysis of biogenic amines in Drosophila melanogaster. Anal Chem. 2003;75(16):3972–8.

    Article  CAS  PubMed  Google Scholar 

  21. Pyakurel P, Shin M, Venton BJ. Nicotinic acetylcholine receptor (nAChR) mediated dopamine release in larval Drosophila melanogaster. Neurochem Int. 2018;114:33–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Shin M, Field TM, Stucky CS, Furgurson MN, Johnson MA. Ex vivo measurement of electrically evoked dopamine release in zebrafish whole brain. ACS Chem Neurosci. 2017;8(9):1880–8.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Shin M, Copeland JM, Venton BJ. Drosophila as a model system for neurotransmitter measurements. ACS Chem Neurosci. 2018;9(8):1872–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Shin M, Venton BJ. Electrochemical measurements of acetylcholine-stimulated dopamine release in adult Drosophila melanogaster brains. Anal Chem. 2018;90(17):10318–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Cao Q, Puthongkham P, Venton BJ. Review: new insights into optimizing chemical and 3D surface structures of carbon electrodes for neurotransmitter detection. Anal Methods. 2019;11(3):247–61.

    Article  CAS  PubMed  Google Scholar 

  26. Ganesana M, Lee ST, Wang Y, Venton BJ. Analytical techniques in neuroscience: recent advances in imaging, separation, and electrochemical methods. Anal Chem. 2017;89(1):314–41.

    Article  CAS  PubMed  Google Scholar 

  27. Shin M, Wang Y, Borgus JR, Venton BJ. Electrochemistry at the synapse. Annu Rev Anal Chem. 2019 12;12(1):297–321.

  28. Ingram KK, Pilko A, Heer J, Gordon DM. Colony life history and lifetime reproductive success of red harvester ant colonies. Coulson T, editor. J Anim Ecol 2013;82(3):540–550.

  29. Cooper SE, Venton BJ. Fast-scan cyclic voltammetry for the detection of tyramine and octopamine. Anal Bioanal Chem. 2009;394(1):329–36.

    Article  CAS  PubMed  Google Scholar 

  30. Jackson BP, Dietz SM, Wightman RM. Fast-scan cyclic voltammetry of 5-hydroxytryptamine. Anal Chem. 1995;67(6):1115–20.

    Article  CAS  PubMed  Google Scholar 

  31. Hashemi P, Dankoski EC, Petrovic J, Keithley RB, Wightman RM. Voltammetric detection of 5-hydroxytryptamine release in the rat brain. Anal Chem. 2009;81(22):9462–71.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Hardie SL, Hirsh J. An improved method for the separation and detection of biogenic amines in adult Drosophila brain extracts by high performance liquid chromatography. J Neurosci Methods. 2006;153(2):243–9.

    Article  CAS  PubMed  Google Scholar 

  33. Aonuma H, Watanabe T. Changes in the content of brain biogenic amine associated with early colony establishment in the queen of the ant, Formica japonica. Gronenberg W, editor. PLoS One. 2012;7(8):e43377.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Mannino G, Abdi G, Emilio Maffei M, Barbero F. Origanum vulgare terpenoids modulate Myrmica scabrinodis brain biogenic amines and ant behaviour. PLoS One. 2018;13(12):e0211749.

    Article  Google Scholar 

  35. Cook CN, Brent CS, Breed MD. Octopamine and tyramine modulate the thermoregulatory fanning response in honey bees (Apis mellifera). J Exp Biol. 2017;220(10):1925–30.

    Article  PubMed  Google Scholar 

  36. Brenes JC, Fornaguera J. The effect of chronic fluoxetine on social isolation-induced changes on sucrose consumption, immobility behavior, and on serotonin and dopamine function in hippocampus and ventral striatum. Behav Brain Res. 2009;198(1):199–205.

    Article  CAS  PubMed  Google Scholar 

  37. Meiser J, Weindl D, Hiller K. Complexity of dopamine metabolism. Cell Commun Signal. 2013;11(1):34.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Bauknecht P, Jékely G. Ancient coexistence of norepinephrine, tyramine, and octopamine signaling in bilaterians. BMC Biol. 2017;15(1):6.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Sloley B. Metabolism of monoamines in invertebrates: the relative importance of monoamine oxidase in different phyla. Neurotoxicology. 2004;25(1–2):175–83.

    Article  CAS  PubMed  Google Scholar 

  40. Yamamoto S, Seto ES. Dopamine dynamics and signaling in Drosophila: an overview of genes, drugs and behavioral paradigms. Exp Anim. 2014;63(2):107–19.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Funding

This research was funded by NIH R01MH085159 to the Venton Lab and a grant from the Stanford Neurosciences Institute to the Gordon lab.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to B. Jill Venton.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Published in the topical collection featuring Female Role Models in Analytical Chemistry.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shin, M., Friedman, D.A., Gordon, D.M. et al. Measurement of natural variation of neurotransmitter tissue content in red harvester ant brains among different colonies. Anal Bioanal Chem 412, 6167–6175 (2020). https://doi.org/10.1007/s00216-019-02355-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02355-3

Keywords

Navigation