Skip to main content

Advertisement

Log in

Can sambaquis (shell mounds) be used as records of the Holocene marine fish biodiversity?

  • Original Paper
  • Published:
Biodiversity and Conservation Aims and scope Submit manuscript

Abstract

The documented quality of the zooarchaeological remains found in sambaquis is an important issue for ecologists who increasingly consider this material as a possible record of historical biodiversity to extend the observation periods of their analyses. In this work ichthyological inventories based on zooarchaeological remains were used to test the hypothesis that they do not differ statistically from those constructed by sampling current ichthyological diversity. Ichthyological records of 68 sambaquis of the Brazilian southeast coast were systematised. Data analyses were done based on taxa richness, taxonomic distinctness and food guild composition approaches. All analyses failed to show significant differences between sambaqui and modern fish inventories. Such result was kept for all tested scales and for the different studied regions. The current results indicate that sambaquis contain records of past species composition and therefore of Holocene biodiversity. It is concluded that sambaqui zooarchaeological remains should not be neglected in ecological studies and represent a quality alternative to extend the temporal scale of these studies.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3

Similar content being viewed by others

References

  • Absolon BA, Andreata JV (2009) Variação espacial dos bagres (Siluriformes, Ariidae) coletados na Baía da Ribeira, Angra dos Reis, Rio de Janeiro e prováveis influências da temperatura e da salinidade. Rev Agro Amb 2(2):155–165

    Google Scholar 

  • Andreata JV (2012) Ictiofauna da Lagoa Rodrigo de Freitas, estado do Rio de Janeiro: composição e aspectos ecológicos. Oecol Aust 16:467–500

    Google Scholar 

  • Andreata JV, Saad AM, Moraes LAF (1994) Contribuição à ecologia de comunidade de peixes da região da Baía da Ribeira, nas proximidades da central Nuclear de Angra I, Angra dos Reis, Rio de Janeiro. Acta Biol Leopold 16(2):57–68

    Google Scholar 

  • Andreata JV, Meurer BC, Baptista MGS, Manzano FV, Teixeira DE, Longo MM, Freret NV (2002) Composição da assembléia de peixes da Baía da Ribeira, Angra dos Reis, Rio de Janeiro, Brasil. Rev Bras Zool 19(4):1139–1146

    Google Scholar 

  • Araujo CCV, Rosa DM, Fernandes JM, Ripoli LV, Krohling W (2008) Composição e estrutura da comunidade de peixes de uma praia arenosa da Ilha do Frade, Vitória, Espírito Santo. Iheringia Sér Zool 98(1):129–135

    Google Scholar 

  • Azevedo MCC, Gomes-Gonçalves RS, Mattos TM, Uehara W, Guedes GHS, Araújo FG (2017) Taxonomic and functional distinctness of the fish assemblages in three coastal environments (bays, coastal lagoons and oceanic beaches) in Southeastern Brazil. Mar Environ Res 129:180–188

    CAS  PubMed  Google Scholar 

  • Baiser B, Ardeshiri RS, Ellison AM (2011) Species richness and trophic diversity increase decomposition in a co-evolved food web. PLoS ONE. https://doi.org/10.1371/journal.pone.0020672

    Article  PubMed  PubMed Central  Google Scholar 

  • Baisre J (2010) Setting a baseline for Caribbean fisheries. J Isl Coast Archaeol 5:120–147

    Google Scholar 

  • Balmford A, Green MJB, Murray MG (1996a) Using higher-taxon richness as a surrogate for species richness: I. Regional tests. Proc R Soc Lond B 263(1375):1267–1274

    Google Scholar 

  • Balmford A, Jayasuriya AHM, Green MJB (1996b) Using higher-taxon richness as a surrogate for species richness: II. Local applications. Proc R Soc Lond B 263(1376):1571–1575

    Google Scholar 

  • Barbanti B, Caires R, Marceniuk AP (2013) A ictiofauna do Canal de Bertioga, São Paulo, Brasil. Biota Neotrop 13(1):276–291

    Google Scholar 

  • Barbiero DC, Macedo IM, Mais B, Zalmon IR (2011) Comparative study of the estimated sample size for benthic intertidal species and communities. Lat Am J Aquat Res 39(1):93–102

    Google Scholar 

  • Barbosa-Guimarães M (2012) Landscape archaeology in coastal areas: technology and subsistence among prehistoric populations. Sci Plena 8(3):1–9

    Google Scholar 

  • Barreto NR (2013) A ictiofauna associada aos costões rochosos da Praia Vermelha, Rio de Janeiro: estrutura da comunidade e respostas às variáveis físicas e químicas da água. Dissertation, Universidade Federal do Estado do Rio de Janeiro

  • Begossi A, May PH, Lopes PF, Oliveira LEC, Vinha V, Silvano RAM (2011) Compensation for environmental services from artisanal fisheries in SE Brazil: policy and technical strategies. Ecol Econ. https://doi.org/10.1016/j.ecolecon.2011.09.008

    Article  Google Scholar 

  • Bizerril CRFS, Costa PAS (2001) Peixes marinhos do estado do Rio de Janeiro. FEMAR e SEMADS, Rio de Janeiro

    Google Scholar 

  • Brose U, Hillebrand H (2016) Biodiversity and ecosystem functioning in dynamic landscapes. Phil Trans R Soc B. https://doi.org/10.1098/rstb.2015.0267

    Article  PubMed  Google Scholar 

  • Buckley SM, McClanahan TR, Morales EMQ, Mwakha V, Nyanapah J, Otwoma LM, Pandolfi JM (2019) Identifying species threatened with local extinction in tropical reef fisheries using historical reconstruction of species occurrence. PLoS ONE 14(2):e0211224. https://doi.org/10.1371/journal.pone.0211224

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Cain SA (1938) The species-area curve. Am Midl Nat 19:573–581

    Google Scholar 

  • Cain SA (1943) Sample-plot technique applied to alpine vegetation in Wyoming. Am J Bot 30:240–247

    Google Scholar 

  • Chaves MCNR (2013) Variações na composição e estrutura da ictiofauna associada a substratos rochosos ao longo do gradiente ambiental da Baía de Guanabara, RJ. Dissertation, Universidade Federal do Estado do Rio de Janeiro

  • Cianciaruso MV, Silva IA, Batalha MA (2009) Diversidades filogenética e funcional: novas abordagens para a Ecologia de Comunidades. Biota Neotrop 9(3):93–103

    Google Scholar 

  • Clarke KR, Gorley RN (2006) Primer v6: user manual/tutorial. Primer-E, Plymouth

    Google Scholar 

  • Clarke KR, Warwick RM (1998) A taxonomic distinctness index and its statistical properties. J Appl Ecol 35:523–531

    Google Scholar 

  • Cowman PF (2014) Historical factors that have shaped the evolution of tropical reef fishes: a review of phylogenies, biogeography, and remaining questions. Front Genet. https://doi.org/10.3389/fgene.2014.00394

    Article  PubMed  PubMed Central  Google Scholar 

  • D’agata S, Mouillot D, Kulbicki M, Andréfouët S, Bellwood DR, Cinner JE, Cowman PF, Kronen M, Pinca S, Vigliola L (2014) Human-mediated loss of phylogenetic and functional diversity in coral reef fishes. Curr Biol 24:555–560. https://doi.org/10.1016/j.cub.2014.01.049

    Article  CAS  PubMed  Google Scholar 

  • Diego JV, Emelio BM, Eleonora VR, Abril RB (2014) Variation in taxonomic diversity of the fish assemblage associated with soft bottoms in San Ignacio Lagoon. J Biodivers Biopros Dev, Baja California Sur, Mexico. https://doi.org/10.4172/2376-0214.1000118

    Book  Google Scholar 

  • Duarte GAS, Andreata JV (2003) Hábito alimentar das espécies de Achiridae e Cynoglossidae que ocorrem na Baía da Ribeira, Angra dos Reis, Rio de Janeiro, Brasil. Bioikos 17(1/2):39–48

    Google Scholar 

  • Erlandson JM, Rick TC (2008) Archaeology, marine ecology, and human impacts on marine ecosystems. In: Rick TC, Erlandson JM (eds) Human impacts on ancient marine ecosystems: a global perspective. University of California Press, Berkeley, pp 1–19

    Google Scholar 

  • Faria RGS, Silva EP, Souza RCCL (2014) Biodiversity of marine molluscs from Sambaqui da Tarioba, Rio das Ostras, Rio de Janeiro (Brazil). Rev Chil Antropol 29(1):49–54

    Google Scholar 

  • Fasca HL, Miceli MFL, Scott PC (2007) Interpretação da distribuição da ictiofauna ao longo da cadeia Vitória-Trindade apoiado em Sistemas de Informação Geográfica (SIG) e Sensoriamento Remoto. In: Anais XIII Simpósio Brasileiro de Sensoriamento Remoto, Florianópolis, pp 4589–4594

  • Ferreira CL, Ferreira CGW, Rangel CA, Mendonça JP, Gerhardinger LC, Filho AC, Godoy EA Jr, Luiz O, Gasparini JL (2007) Peixes recifais. In: Creed JC, Pires DO, Figueiredo OMA (eds) Biodiversidade marinha da Baía de Ilha Grande. Minist Meio Ambient, Brasília, pp 291–322

    Google Scholar 

  • Figuti L (1998) Estórias de arqueo-pescador: considerações sobre a pesca nos sítios de grupos pescadores-coletores do litoral. Rev Arqueol 11:57–70

    Google Scholar 

  • Frazier J (2007) Sustainable use of wildlife: the view from archaeozoology. J Nat Conserv 15:163–173

    Google Scholar 

  • Froese R, Pauly D (2016) FishBase. World Wide Web electronic publication. http://fishbase.org, version 10/2016

  • Gaelzer LR, Machado GR, Noguchi RC (2007) Peixes de praias arenosas. In: Creed JC, Pires DO, Figueiredo OMA (eds) Biodiversidade marinha da Baía de Ilha Grande. Minist Meio Ambient, Brasília, pp 323–348

    Google Scholar 

  • Gotelli NJ, Colwell RK (2001) Quantifying biodiversity: procedures and pitfalls in the measurement and comparison of species richness. Ecol Lett 4:379–391

    Google Scholar 

  • Hall SJ, Greenstreet SP (1998) Taxonomic distinctness and diversity measures: responses in marine fish communities. Mar Ecol Prog Ser 166:227–229

    Google Scholar 

  • Hammer Ø, Harper DAT, Ryan PD (2001) Past: paleontological statistics software package for education and data analysis. Palaeontol Electron 4:1–9

    Google Scholar 

  • Hostim-Silva M, Lima AC, Damasceno J, Sciarretta T, Silva JV, Neto RLB, Carvalho BM, Spach HL (2013) As assembleias de peixes dos estuários de Conceição da Barra e Barra Nova. Tropical Oceanography, Espírito Santo. https://doi.org/10.5914/tropocean.v41i1-2.5718

    Book  Google Scholar 

  • Hutchings JA, Baum JK (2005) Measuring marine fish biodiversity: temporal changes in abundance, life history and demography. Phil Trans R Soc B. https://doi.org/10.1098/rstb.2004.1586

    Article  PubMed  Google Scholar 

  • Kidwell SM (2008) Ecological fidelity of open marine molluscan death assemblages: effects of post-mortem transportation, shelf health, and taphonomic inertia. Lethaia 41:199–217

    Google Scholar 

  • Kidwell SM, Bosence DWJ (1991) Taphonomy and time-averaging of marine shelly faunas. In: Allison PA, Briggs DEG (eds) Taphonomy, releasing the data locked in the fossil record. Plenum, New York, pp 212–290

    Google Scholar 

  • Knapp S (2003) Dynamic diversity. Nature. https://doi.org/10.1038/422475a

    Article  PubMed  Google Scholar 

  • Knowlton N, Jackson JBC (2008) Shifting baselines, local impacts, and global change on coral reefs. PLoS Biol. https://doi.org/10.1371/journal.pbio.0060054

    Article  PubMed  PubMed Central  Google Scholar 

  • Kowalewski M, Carroll M, Casazza L, Gupta NS, Hannisdal B, Hendy A, Krause RA Jr, LaBarbera M, Lazo DG, Messina C, Puchalski S, Rothfus TA, Sälgeback J, Stempien J, Terry RC, Tomasových A (2003) Quantitative fidelity of brachiopod-mollusk assamblages from modern subtidal environments of San Juan Islands, USA. J Taphon 1(1):45–63

    Google Scholar 

  • Lean C, Maclaurin J (2016) The value of phylogenetic diversity. In: Pellens R, Grandcolas P (eds) Biodiversity conservation and phylogenetic systematics. Topics in biodiversity and conservation, vol 14. Springer, Cham, pp 19–37

    Google Scholar 

  • Lima TA, Macario KD, Anjos RM, Gomes PRS, Coimbra RS, Elamore E (2003) AMS dating of early shellmounds of the southeastern Brazilian coast. Braz J Phys 33(2):276–279

    Google Scholar 

  • Lopes MS, Bertucci TCP, Rapagnã L, Tubino RA, Monteiro-Neto C, Tomas ARG, Tenório MC, Lima TA, Souza RCCL, Carrillo-Briceño JD, Haimovici M, Macario KD, Carvalho Socorro AO (2016) The path towards endangered species: prehistoric fisheries in Southeastern Brazil. PLoS ONE 11(6):e0154476. https://doi.org/10.1371/journal.pone.0154476

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lyman RL (2010) What taphonomy is, what it isn´t and why taphonomists should care about the difference. J Taphon 8:1–16

    Google Scholar 

  • Lyman RL (2012) A warrant for applied palaeozoology. Biol Rev 87(3):513–525. https://doi.org/10.1111/j.1469-185x.2011.00207.x

    Article  PubMed  Google Scholar 

  • Magurran AE, Baillie SR, Buckland ST, McP Dick J, Elston DA, Scott EM, Smith RI, Somerfield PJ, Watt AD (2010) Long-term datasets in biodiversity research and monitoring: assessing change in ecological communities through time. Trends Ecol Evol. https://doi.org/10.1016/j.tree.2010.06.016

    Article  PubMed  Google Scholar 

  • Martello AR, Kotzian CB, Simões MG (2006) Quantitative fidelity of recent freshwater mollusk assemblages from the Touro Passo River, Rio Grande do Sul, Brazil. Iheringia Sér Zool 96:453–465

    Google Scholar 

  • McClanahan TR, Omukoto JO (2011) Comparison of modern and historical fish catches (AD 750-1400) to inform goals for marine protected areas and sustainable fisheries. Conserv Biol. https://doi.org/10.1111/j.1523-1739.2011.01694.x

    Article  PubMed  Google Scholar 

  • McClenachan L, Cooper AB, McKenzie MG, Drew JA (2015) The importance of surprising results and best practices in historical ecology. Bioscience. https://doi.org/10.1093/biosci/biv100

    Article  Google Scholar 

  • McCune JL (2016) Species distribution models predict rare species occurrences despite significant effects of landscape context. J Appl Ecol. https://doi.org/10.1111/1365-2664.12702

    Article  Google Scholar 

  • Mendes AB, Silva EP, Souza RCCL (2014) Biodiversity of marine fishes from shellmounds of Ilha Grande Bay, Rio de Janeiro, Brazil. Rev Chil Antropol 29(1):55–59

    Google Scholar 

  • Mendes AB, Duarte MR, Silva EP (2018) Biodiversity of Holocene marine fish of the southeast coast of Brazil. Biota Neotrop. https://doi.org/10.1590/1676-0611-bn-2017-0394

    Article  Google Scholar 

  • Menezes NA (2011) Checklist dos peixes marinhos do Estado de São Paulo, Brasil. Biota Neotrop 11:33–46

    Google Scholar 

  • Menezes NA, Buckup PA, Figueiredo JL, Moura RL (2003) Catálogo das espécies de peixes marinhos do Brasil. Museu de Zoologia/USP, São Paulo

    Google Scholar 

  • Mihoub JB, Henle K, Titeux N, Brotons L, Brummitt NA, Schmeller DS (2017) Setting temporal baselines for biodiversity: the limits of available monitoring data for capturing the full impact of anthropogenic pressures. Sci Rep-UK. https://doi.org/10.1038/srep41591

    Article  Google Scholar 

  • Molinier R (1963) Cours de géobotanique. C.R.D.P. Ed, Aix-en-Provence

  • Morlon H (2014) Understanding how biodiversity is distributed in space and time. In: Fages F, Piazza C (eds) Formal methods in macro-biology. Springer, Cham

    Google Scholar 

  • Myers N, Mittermeier RA, Mittermeier CG, da Fonseca GAB, Kent J (2000) Biodiversity hotspots for conservation priorities. Nature. https://doi.org/10.1038/35002501

    Article  PubMed  Google Scholar 

  • Pahl-Wostl C (1995) The dynamic nature of ecossystems: chaos and order entwined. Wiley, New York

    Google Scholar 

  • Peacock E, Palmer RA, Xia Y, Bacon-Schulte W, Carlock B, Smith J (2010) Chemical sourcing of a prehistoric freshwater shell artifact using laser ablation-inductively coupled plasma-mass spectrometry. Archaeol East N Am 38:91–99

    Google Scholar 

  • Peacock E, Randklev CR, Wolverton S, Palmer RA, Zaleski S (2012) The “cultural filter”, human transport of mussel shell, and the applied potential of zooarchaeological data. Ecol Appl 22(5):1446–1459

    PubMed  Google Scholar 

  • Petchey OL, Gaston KJ (2002) Functional diversity (FD), species richness and community composition. Ecol Lett 5:402–411

    Google Scholar 

  • Ramineli SM, Silveira RB, Ferreira CB (2011) Estudos preliminares para o levantamento da ictiofauna em Paraty-Mirim (Paraty, RJ). In: Anais do XIV Simpósio de Biologia Marinha, Santos

  • Reitz EJ, Wing ES (2008) Zooarchaeology. Cambridge University Press, Cambridge

    Google Scholar 

  • Rick TC, Lockwood R (2013) Integrating paleobiology, archeology, and history to inform biological conservation. Conserv Biol 27(1):45–54

    PubMed  Google Scholar 

  • Ritter MN, Erthal F (2013) Fidelity bias in mollusk assemblages from coastal lagoons of Southern Brazil. Rev Bras Paleontol 16:225–236

    Google Scholar 

  • Rosenzweig ML (1995) Species diversity in space and time. Cambridge University Press, New York

    Google Scholar 

  • Santos JAP, Schmiegelow JMM, Rotundo MM, Barrella W (2015) Composição e variação temporal da assembleia de peixes do alto sistema estuarino de Santos, São Paulo, Brasil. Bol Inst Pesca 41(4):945–959

    Google Scholar 

  • Silva EJE, Loeck AE (1999) Ocorrência de formigas domiciliares (Hymenoptera: Formicidae) em Pelotas, RS. R Bras Agrociênc 5:220–224

    Google Scholar 

  • Silva EP, Pádua SC, Souza RCCL, Duarte MR (2017) Shell Mounds of the Southeast Coast of Brazil: Recovering Information on Past Malacological Biodiversity. In: Mondini M, Muñoz A, Fernández P (eds) Zooarchaeology in the Neotropics. Springer, Cham, pp 47–60

    Google Scholar 

  • Sokal RR, Rohlf FJ (1997) Biometry: the principles and practice of statistics in biological research. W. H. Freeman, New York

    Google Scholar 

  • Souza RCCL, Lima TA, Duarte MR, Silva EP (2016) Changes in patterns of biodiversity of marine mollusks along the Brazilian coast during the late Holocene inferred from shell-mound (sambaquis) data. Holocene 26(11):1802–1809

    Google Scholar 

  • speciesLink (2018) http://splink.cria.org.br. Accessed Mar 2018

  • Szabó P (2015) Historical ecology: past, present and future. Biol Rev 90(4):997–1014

    PubMed  Google Scholar 

  • Tacon AGJ (1994) Feed ingredients for carnivorous fish species: alternatives to fish meal and other fisheries resources. In: FAO fisheries circular, vol 881. FAO, Roma

  • Thurstan RH, McClenachan L, Crowder LB, Drew JA, Kittinger JN, Levin PS, Roberts CM, Pandolfi JM (2015) Filling historical data gaps to foster solutions in marine conservation. Ocean Coast Manage. https://doi.org/10.1016/j.ocecoaman.2015.04.019

    Article  Google Scholar 

  • Tolimieri N, Anderson MJ (2010) Taxonomic distinctness of demersal fishes of the California current: moving beyond simple measures of diversity for marine ecosystem-based management. PLoS ONE 5(5):e10653. https://doi.org/10.1371/journal.pone.0010653

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Tucker CM, Cadotte MW, Carvalho SB, Davies TJ, Ferrier S, Fritz SA, Grenyer R, Helmus MR, Jin LS, Mooers AO, Pavoine S, Purschke O, Redding DW, Rosauer DF, Winter M, Mazel F (2017) A guide to phylogenetic metrics for conservation, community ecology and macroecology. Biol Rev 92:698–715. https://doi.org/10.1111/brv.12252

    Article  PubMed  Google Scholar 

  • Uerpmann HP (1973) Animal bone finds and economic archaeology: a critical study of ‘‘osteo-archaeological method’’. World Archaeol 4:307–332

    CAS  PubMed  Google Scholar 

  • Ugland KI, Gray JS, Ellingsen KE (2003) The species-accumulation curve and estimation of species richness. J Anim Ecol 72:888–897

    Google Scholar 

  • Wagner GP, Silva LA (2014) Prehistoric maritime domain and brazilian shellmounds. Archaeol Discov. https://doi.org/10.4236/ad.2014.21001

    Article  Google Scholar 

  • Warwick RM, Light J (2002) Death assemblages of molluscs on St Martin’s Flats, Isles of Scilly: a surrogate for regional biodiversity? Biodivers Conserv 11:99–112

    Google Scholar 

  • Willis KJ, Birks HJB (2006) What is natural? The need for a long-term perspective in biodiversity and conservation. Science 314:1261–1265

    CAS  PubMed  Google Scholar 

  • Willis KJ, Gillson L, Knapp S (2007) Biodiversity hotspots through time: an introduction. Phil Trans R Soc B 362:169–174

    PubMed  Google Scholar 

  • Willott SJ (2001) Species accumulation curves and the measure of sampling effort. J Appl Ecol 38:484–486

    Google Scholar 

  • Wright S (1978) Evolution and the genetics of populations. Vol. IV: variability within and among natural populations. University of Chicago Press, Chicago

Download references

Acknowledgments

The authors would like to thank CAPES (Coordenação de Aperfeiçoamento de Pessoal de Nível Superior) for scholarships for M. R. Duarte (Post-doctorate) and A. B. Mendes (MSc).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Michelle Rezende Duarte.

Additional information

Communicated by Kevin Edwards.

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

This article belongs to the Topical Collection: Coastal and marine biodiversity.

Electronic supplementary material

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Mendes, A.B., Silva, E.P. & Duarte, M.R. Can sambaquis (shell mounds) be used as records of the Holocene marine fish biodiversity?. Biodivers Conserv 29, 39–56 (2020). https://doi.org/10.1007/s10531-019-01868-8

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10531-019-01868-8

Keywords

Navigation