Skip to main content
Log in

Correlation Between Gel Strength of Starch-Based Hydrogel and Slow Release Behavior of Its Embedded Urea

  • Original Paper
  • Published:
Journal of Polymers and the Environment Aims and scope Submit manuscript

Abstract

Starch-based hydrogels have attracted increasingly attention for application in controlled release fertilizers. However, there is currently a lack of knowledge on ways to characterize this system. In this work, we employed a hot-compression vulcanizer to in-situ synthesize monolithic urea-embedded grafted starch hydrogels with a slab geometry, which facilitates the subsequent measurement of gel strength and urea release kinetics. The results revealed that the greater the gel strength induced by a decreased urea load, an increased graft content, and an increased cross-linking density of starch-based hydrogels, the less the initial burst release of embedded urea. The unavoidable burst release could be ascribed to the heterogeneous network structure of starch-based hydrogels. The network of the hydrogels also afforded an zero-order, or at least time-independent, release kinetics of urea at intermediate stable stage, regardless of their microstructural parameters. Our results could provide a guideline to the design of hydrogel-based fertilizer delivery systems.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. Azeem B, Kushaari KZ, Man ZB, Basit A, Thanh TH (2014) J Control Release 181:11–21

    Article  CAS  Google Scholar 

  2. Bao X, Yu L, Simon GP, Shen S, Xie F, Liu H, Chen L, Zhong L (2018) Carbohydr Polym 192:1

    Article  CAS  Google Scholar 

  3. Fernández-Escobar R, Benlloch M, Herrera E, García-Novelo JM (2004) Sci Hortic 101:39–49

    Article  Google Scholar 

  4. Tosin M, Pischedda A, Degli-Innocenti F (2019) Polym Degrad Stab 166:213–218

    Article  CAS  Google Scholar 

  5. Jana S, Pradhan SS, Tripathy T (2017) J Polym Environ 26:2730–2747

    Article  Google Scholar 

  6. Smith LED, Siciliano G (2015) Agric Ecosyst Environ 209:15–25

    Article  Google Scholar 

  7. Trinh TH, Kushaari K, Shuib AS, Ismail L, Azeem B (2015) Biosyst Eng 130:34–42

    Article  Google Scholar 

  8. Weiss PJ, Meisen A (2010) Chem Eng J 61:440–447

    Google Scholar 

  9. Ammala A, Bateman S, Dean K, Petinakis S, Sangwan P, Wong WH, Yuan Q, Yu L, Patrick C, Leong K (2011) Prog Polym Sci 36:1015–1049

    Article  CAS  Google Scholar 

  10. Mulder WJ, Gosselink RJA, Vingerhoeds MH, Harmsen PFH, Eastham DJ (2011) Ind Crop Prod 34:915–920

    Article  CAS  Google Scholar 

  11. Ni B, Liu M, Lü S (2009) Chem Eng J 155:892–898

    Article  CAS  Google Scholar 

  12. Qiao D, Liu H, Yu L, Bao X, Simon GP, Petinakis E, Chen L (2016) Carbohydr Polym 147:146–154

    Article  CAS  Google Scholar 

  13. Abdel-Halim ES, Al-Deyab SS (2014) React Funct Polym 75:1–8

    Article  CAS  Google Scholar 

  14. Bao X-y, Ali A, Qiao D-l, Liu H-s, Chen L, Yu L (2015) Acta Polym Sin 5:1010–1019

    Google Scholar 

  15. Shaviv A, Raban S, Zaidel E (2003) Environ Sci Technol 37:2251–2256

    Article  CAS  Google Scholar 

  16. Kwan A, Davidov-Pardo G (2018) Food Chem 250:46–53

    Article  CAS  Google Scholar 

  17. Giuliano E, Paolino D, Fresta M, Cosco D (2018) Medicines (Basel) 6:121

    Google Scholar 

  18. Waigh TA (2016) Rep Prog Phys 79:074601

    Article  Google Scholar 

  19. Xu B, Liu Y, Wang L, Ge X, Fu M, Wang P, Wang Q (2018) Polymer 10:235

    Article  Google Scholar 

  20. Zhang Y, Mao J, Zhao J, Xu T, Du A, Zhang Z, Zhang W, Ma S (2019) Polymer 11:1350

    Article  Google Scholar 

  21. Sun R, Zhu L, Zhao B, Zhou Q, Jing XU, Zhang F (2004) Chin J Appl Ecol 15:1907–1910

    CAS  Google Scholar 

  22. Xiao X, Yu L, Xie F, Bao X, Liu H, Ji Z, Chen L (2017) Chem Eng J 309:607–616

    Article  CAS  Google Scholar 

  23. Anagha B, George D, Maheswari PU, Begum KMMS (2019) J Polym Environ 27:2054–2067

    Article  CAS  Google Scholar 

  24. Serizawa T, Wakita K, Akashi M (2002) Macromolecules 35:10–12

    Article  CAS  Google Scholar 

  25. Hu X, Cheng W, Wen N, Shao Z (2015) Polym Adv Technol 26:1340–1345

    Article  CAS  Google Scholar 

  26. Sevenou O, Hill S, Farhat I, Mitchell J (2002) Int J Biol Macromol 31:79–85

    Article  CAS  Google Scholar 

  27. Zou W, Yu L, Liu X, Chen L, Zhang X, Qiao D, Zhang R (2012) Carbohydr Polym 87:1583–1588

    Article  CAS  Google Scholar 

  28. Zhou T, Wang Y, Huang S, Zhao Y (2018) Sci Total Environ 615:422–430

    Article  CAS  Google Scholar 

  29. Shogren RL, Swanson CL, Thompson AR (1992) Starch 44:335–338

    Article  CAS  Google Scholar 

  30. Spigno G, Faveri DMD (2004) J Food Eng 62:337–344

    Article  Google Scholar 

  31. Jeong B, Bae YH, Kim SW (2000) J Control Release 63:155–163

    Article  CAS  Google Scholar 

  32. Mallapragada SK, Peppas NA, Colombo P (1997) J Biomed Mater 36:125–130

    Article  CAS  Google Scholar 

  33. Bao X, Yu L, Simon GP, Shen S, Xie F, Liu H, Chen L, Zhong L (2018) Carbohydr Polym 192:1–9

    Article  CAS  Google Scholar 

  34. Chinaglia S, Tosin M, Degli-Innocenti F (2018) Polym Degrad Stab 147:237–244

    Article  CAS  Google Scholar 

  35. Vasudev SC, Chandy T, Sharma CP (1997) Biomaterials 18:375–381

    Article  CAS  Google Scholar 

  36. Wei W, Qi X, Liu Y, Li J, Hu X, Zuo G, Zhang J, Dong W (2015) Colloids Surf B Biointerfaces 136:1182–1192

    Article  CAS  Google Scholar 

  37. Caccavo D, Cascone S, Lamberti G, Barba AA, Larsson A (2016) Drug Deliv 157:237–303

    Google Scholar 

Download references

Acknowledgements

This work has been financially supported by the National Key R&D Program of China (Project No. 2018YFD0400700), the NSFC (Project No. 31571789), and the 111 Project (Project No. B17018).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Long Yu or Hongsheng Liu.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wei, X., Bao, X., Yu, L. et al. Correlation Between Gel Strength of Starch-Based Hydrogel and Slow Release Behavior of Its Embedded Urea. J Polym Environ 28, 863–870 (2020). https://doi.org/10.1007/s10924-020-01653-7

Download citation

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10924-020-01653-7

Keywords

Navigation