Skip to main content
Log in

Cold Plasma Up-Regulated Expressions of WRKY1 Transcription Factor and Genes Involved in Biosynthesis of Cannabinoids in Hemp (Cannabis sativa L.)

  • Original Paper
  • Published:
Plasma Chemistry and Plasma Processing Aims and scope Submit manuscript

Abstract

Plasma technology as an eco-friendly efficient strategy has gained much attention in various industries, especially in food, medicine, and agriculture. This study aimed to explore the cold plasma-mediated changes in growth, anatomy, expression of a WRKY1 transcription factor, and transcription rates of four key genes involved in the biosynthesis of cannabinoids (pharmaceutically valuable secondary metabolites) in hemp (Cannabis sativa L.). The seeds were treated with cold plasma (dielectric barrier discharge; 0.84 W cm−2; exposure times of 0, 40, and 80 s). The plasma treatment of 40 s increased biomass in both shoot and roots by an average of 57%, whereas the treatment at 80 s delayed growth and reduced it by 48%. Seed priming with plasma up-regulated the WRKY1 transcription factor (mean = 11.55 folds). Besides, the plasma treatments induced the expression of olivetolic acid cyclase by 42 folds. Furthermore, the plasma-primed seedlings also exhibited higher expression rates of olivetol synthase by 19 folds. With a similar trend, exposure to plasma stimulated transcription of cannabidiolic acid synthase by 12.4 folds. Up-regulations in Δ9-tetrahydrocannabinolic acid synthase also occurred following seed priming with plasma by 25.6 folds. Seed priming with plasma exhibits high potency to up-regulate expressions of genes involved in the productions of secondary metabolites, like cannabinoids. These results imply that the plasma reception and signal transduction can alter expressions of genes at the transcriptional level through which plasma priming may improve plant protection and secondary metabolism.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  1. Van Den Broeck HC, Maliepaard C, Ebskamp MJ, Toonen MA, Koops AJ (2008) Differential expression of genes involved in C1 metabolism and lignin biosynthesis in wooden core and bast tissues of fibre hemp (Cannabis sativa L.). Plant Sci 174(2):205–220. https://doi.org/10.1016/j.plantsci.2007.11.008

    Article  CAS  Google Scholar 

  2. Flores-Sanchez IJ, Verpoorte R (2008) Secondary metabolism in cannabis. Phytochem Rev 7(3):615–639. https://doi.org/10.1007/s11101-008-9094-4

    Article  CAS  Google Scholar 

  3. Gagne SJ, Stout JM, Liu E, Boubakir Z, Clark SM, Page JE (2012) Identification of olivetolic acid cyclase from Cannabis sativa reveals a unique catalytic route to plant polyketides. Proc Natl Acad Sci 109(31):12811–12816. https://doi.org/10.1073/pnas.1200330109

    Article  PubMed  Google Scholar 

  4. Taura F, Tanaka S, Taguchi C, Fukamizu T, Tanaka H, Shoyama Y, Morimoto S (2009) Characterization of olivetol synthase, a polyketide synthase putatively involved in cannabinoid biosynthetic pathway. FEBS Lett 583(12):2061–2066. https://doi.org/10.1016/j.febslet.2009.05.024

    Article  CAS  PubMed  Google Scholar 

  5. Taura F, Sirikantaramas S, Shoyama Y, Yoshikai K, Shoyama Y, Morimoto S (2007) Cannabidiolic-acid synthase, the chemotype-determining enzyme in the fiber-type Cannabis sativa. FEBS Lett 581(16):2929–2934. https://doi.org/10.1016/j.febslet.2007.05.043

    Article  CAS  PubMed  Google Scholar 

  6. Sirikantaramas S, Taura F, Morimoto S, Shoyama Y (2007) Recent advances in Cannabis sativa research: biosynthetic studies and its potential in biotechnology. Curr Pharm Biotechnol 8(4):237–243. https://doi.org/10.2174/138920107781387456

    Article  CAS  PubMed  Google Scholar 

  7. Happyana N, Kayser O (2016) Monitoring metabolite profiles of Cannabis sativa L. trichomes during flowering period using 1H NMR-based metabolomics and real-time PCR. Planta Med 82(13):1217–1223. https://doi.org/10.1055/s-0042-108058

    Article  CAS  PubMed  Google Scholar 

  8. Jalali S, Salami SA, Sharifi M, Sohrabi S (2019) Signaling compounds elicit expression of key genes in cannabinoid pathway and related metabolites in cannabis. Ind Crops Prod 133:105–110. https://doi.org/10.1016/j.indcrop.2019.03.004

    Article  CAS  Google Scholar 

  9. Sheteiwy MS, An J, Yin M, Jia X, Guan Y, He F, Hu J (2019) Cold plasma treatment and exogenous salicylic acid priming enhances salinity tolerance of Oryza sativa seedlings. Protoplasma 256(1):79–99. https://doi.org/10.1007/s00709-018-1279-0

    Article  CAS  PubMed  Google Scholar 

  10. Seddighinia FS, Iranbakhsh A, Ardebili ZO, Satari TN, Soleimanpour S (2019) Seed priming with cold plasma and multi-walled carbon nanotubes modified growth, tissue differentiation, anatomy, and yield in bitter melon (Momordica charantia). J Plant Growth Regul. https://doi.org/10.1007/s00344-019-09965-2

    Article  Google Scholar 

  11. Iranbakhsh A, Ardebili NO, Ardebili ZO, Shafaati M, Ghoranneviss M (2018) Non-thermal plasma induced expression of heat shock factor A4A and improved wheat (Triticum aestivum L.) growth and resistance against salt stress. Plasma Chem Plasma Process 38(1):29–44. https://doi.org/10.1007/s11090-017-9861-3

    Article  CAS  Google Scholar 

  12. Iranbakhsh A, Ardebili ZO, Ardebili NO, Ghoranneviss M, Safari N (2018) Cold plasma relieved toxicity signs of nano zinc oxide in Capsicum annuum cayenne via modifying growth, differentiation, and physiology. Acta Physiol Plant 40(8):154. https://doi.org/10.1007/s11738-018-2730-8

    Article  CAS  Google Scholar 

  13. Moghanloo M, Iranbakhsh A, Ebadi M, Ardebili ZO (2019) Differential physiology and expression of phenylalanine ammonia lyase (PAL) and universal stress protein (USP) in the endangered species Astragalus fridae following seed priming with cold plasma and manipulation of culture medium with silica nanoparticles. 3 Biotech 9(7):288. https://doi.org/10.1007/s13205-019-1822-5

    Article  PubMed  Google Scholar 

  14. Moghanloo M, Iranbakhsh A, Ebadi M, Satari TN, Ardebili ZO (2019) Seed priming with cold plasma and supplementation of culture medium with silicon nanoparticle modified growth, physiology, and anatomy in Astragalus fridae as an endangered species. Acta Physiol Plant 41(4):54. https://doi.org/10.1007/s11738-019-2846-5

    Article  CAS  Google Scholar 

  15. Iranbakhsh A, Ghoranneviss M, Ardebili ZO, Ardebili NO, Tackallou SH, Nikmaram H (2017) Non-thermal plasma modified growth and physiology in Triticum aestivum via generated signaling molecules and UV radiation. Biol Plant 61(4):702–708. https://doi.org/10.1007/s10535-016-0699-y

    Article  CAS  Google Scholar 

  16. Safari N, Iranbakhsh A, Ardebili ZO (2017) Non-thermal plasma modified growth and differentiation process of Capsicum annuum PP805 Godiva in in vitro conditions. Plasma Sci Technol 19(5):055501. https://doi.org/10.1088/2058-6272/aa57ef

    Article  CAS  Google Scholar 

  17. Babajani A, Iranbakhsh A, Ardebili ZO, Eslami B (2019) Seed priming with non-thermal plasma modified plant reactions to selenium or zinc oxide nanoparticles: cold plasma as a novel emerging tool for plant science. Plasma Chem Plasma Process 39(1):21–34. https://doi.org/10.1007/s11090-018-9934-y

    Article  CAS  Google Scholar 

  18. Mildažienė V, Aleknavičiūtė V, Žūkienė R, Paužaitė G, Naučienė Z, Filatova I, Lyushkevich V, Haimi P, Tamošiūnė I, Baniulis D (2019) Treatment of common sunflower (Helianthus annus L.) seeds with radio-frequency electromagnetic field and cold plasma induces changes in seed phytohormone balance, seedling development and leaf protein expression. Sci Rep 9(1):6437. https://doi.org/10.1038/s41598-019-42893-5

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Ling L, Jiangang L, Minchong S, Chunlei Z, Yuanhua D (2015) Cold plasma treatment enhances oilseed rape seed germination under drought stress. Sci Rep 5:13033

    Article  Google Scholar 

  20. Kyzek S, Holubová Ľ, Medvecká V, Tomeková J, Gálová E, Zahoranová A (2019) Cold atmospheric pressure plasma can induce adaptive response in pea seeds. Plasma Chem Plasma Process 39(2):475–486

    Article  CAS  Google Scholar 

  21. Liu L, White MJ, MacRae TH (1999) Transcription factors and their genes in higher plants: functional domains, evolution and regulation. Eur J Biochem 262(2):247–257. https://doi.org/10.1046/j.1432-1327.1999.00349.x

    Article  CAS  PubMed  Google Scholar 

  22. Yu F, Huaxia Y, Lu W, Wu C, Cao X, Guo X (2012) GhWRKY15, a member of the WRKY transcription factor family identified from cotton (Gossypium hirsutum L), is involved in disease resistance and plant development. BMC Plant Biol 12(1):144. https://doi.org/10.1186/1471-2229-12-144

    Article  CAS  PubMed  Google Scholar 

  23. Wang Q, Wang M, Zhang X, Hao B, Kaushik SK, Pan Y (2011) WRKY gene family evolution in Arabidopsis thaliana. Genetica 139(8):973. https://doi.org/10.1007/s10709-011-9599-4

    Article  CAS  PubMed  Google Scholar 

  24. Bakshi M, Oelmüller R (2014) WRKY transcription factors: jack of many trades in plants. Plant Signal Behav 9(2):e27700. https://doi.org/10.4161/psb.27700

    Article  CAS  PubMed  Google Scholar 

  25. Babajani A, Iranbakhsh A, Ardebili ZO, Eslami B (2019) Differential growth, nutrition, physiology, and gene expression in Melissa officinalis mediated by zinc oxide and elemental selenium nanoparticles. Environ Sci Pollut Res 26(24):24430–24444

    Article  CAS  Google Scholar 

  26. Sera B, Sery M, Gavril B, Gajdova I (2017) Seed germination and early growth responses to seed pre-treatment by non-thermal plasma in hemp cultivars (Cannabis sativa L.). Plasma Chem Plasma Process 37(1):207–221. https://doi.org/10.1007/s11090-016-9763-9

    Article  CAS  Google Scholar 

  27. Ji SH, Choi KH, Pengkit A, Im JS, Kim JS, Kim YH, Park Y, Hong EJ, Kyung Jung S, Choi EH, Park G (2016) Effects of high voltage nanosecond pulsed plasma and micro DBD plasma on seed germination, growth development and physiological activities in spinach. Arch Biochem Biophys 605:117–128

    Article  CAS  Google Scholar 

  28. Shapira Y, Bormashenko E, Drori E (2019) Pre-germination plasma treatment of seeds does not alter cotyledon DNA structure, nor phenotype and phenology of tomato and pepper plants. Biochem Biophys Res Commun 519(3):512–517

    Article  CAS  Google Scholar 

  29. Li C, He X, Luo X, Xu L, Liu L, Min L, Jin L, Zhu L, Zhang X (2014) Cotton WRKY1 mediates the plant defense-to-development transition during infection of cotton by Verticillium dahliae by activating JASMONATE ZIM-DOMAIN1 expression. Plant Physiol 166(4):2179–2194. https://doi.org/10.1104/pp.114.246694

    Article  CAS  PubMed  Google Scholar 

  30. Shinde BA, Dholakia BB, Hussain K, Aharoni A, Giri AP, Kamble AC (2018) WRKY1 acts as a key component improving resistance against Alternaria solani in wild tomato, Solanum arcanum Peralta. Plant Biotechnol J 16(8):1502–1513. https://doi.org/10.1111/pbi.12892

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  31. Heerah S, Katari M, Penjor R, Coruzzi G, Marshall-Colon A (2019) WRKY1 mediates transcriptional crosstalk between light and nitrogen signaling pathways in Arabidopsis thaliana. bioRxiv 1:603142

    Google Scholar 

  32. Safari M, Ardebili ZO, Iranbakhsh A (2018) Selenium nano-particle induced alterations in expression patterns of heat shock factor A4A (HSFA4A), and high molecular weight glutenin subunit 1Bx (Glu-1Bx) and enhanced nitrate reductase activity in wheat (Triticum aestivum L.). Acta Physiol Plant 40(6):117

    Article  Google Scholar 

  33. Ren X, Chen Z, Liu Y, Zhang H, Zhang M, Liu Q, Hong X, Zhu JK, Gong Z (2010) ABO3, a WRKY transcription factor, mediates plant responses to abscisic acid and drought tolerance in Arabidopsis. Plant J 63(3):417–429. https://doi.org/10.1111/j.1365-313X.2010.04248.x

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Schluttenhofer C, Pattanaik S, Patra B, Yuan L (2014) Analyses of Catharanthus roseus and Arabidopsis thaliana WRKY transcription factors reveal involvement in jasmonate signaling. BMC Genom 15(1):502. https://doi.org/10.1186/1471-2164-15-502

    Article  CAS  Google Scholar 

  35. Palmieri MC, Sell S, Huang X, Scherf M, Werner T, Durner J, Lindermayr C (2008) Nitric oxide-responsive genes and promoters in Arabidopsis thaliana: a bioinformatics approach. J Exp Bot 59(2):177–186. https://doi.org/10.1093/jxb/erm345

    Article  CAS  PubMed  Google Scholar 

  36. Kabir AH, Rahman MM, Das U, Sarkar U, Roy NC, Reza MA, Talukder MR, Uddin MA (2019) Reduction of cadmium toxicity in wheat through plasma technology. PLoS ONE 14(4):e0214509

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alireza Iranbakhsh.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iranbakhsh, A., Oraghi Ardebili, Z., Molaei, H. et al. Cold Plasma Up-Regulated Expressions of WRKY1 Transcription Factor and Genes Involved in Biosynthesis of Cannabinoids in Hemp (Cannabis sativa L.). Plasma Chem Plasma Process 40, 527–537 (2020). https://doi.org/10.1007/s11090-020-10058-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11090-020-10058-2

Keywords

Navigation