Skip to main content

Advertisement

Log in

Spill-back events followed by self-sustainment explain the fast colonization of a newly built marina by a notorious invasive seaweed

  • Original Paper
  • Published:
Biological Invasions Aims and scope Submit manuscript

Abstract

Biological invasions are occurring at increasing rates since the onset of the twentieth century. While ports and marinas have been identified as a major point-of-entry for the spread of marine non-indigenous species (NIS), their relationships with wild habitats however needs further scrutiny. We had the rare opportunity to monitor the real-time colonization dynamics of a newly-built marina by the notorious invasive kelp Undaria pinnatifida in the Bay-of-Morlaix, Brittany (France). Field surveys (> 20,000 individuals geo-localized) were combined with genetic analyses (10 microsatellite loci, N = 890 individuals) over 3 years (i.e., 6 generations in the study area). Regarding the colonization dynamics, a dramatic snow-ball effect was documented over time, with local density reaching up to 50 individuals per m after 2 years. Assignment tests showed that the primary colonizers came from neighboring populations established in natural rocky reefs. A shift towards a self-sustaining population was however observed the following year, with 44% of self-assignment. These processes are best explained by (i) life history traits, notably rapid growth and selfing, and (ii) natural dispersal within the marina combined with human-mediated dispersal—through leisure boating- over longer distances. Spill-over effects have been previously documented, and here also reported, to explain the expansion of U. pinnatifida from marinas to the wild. We showed that the on-going ocean sprawl also offers a perfect arena for spill-back events (i.e., spread from natural habitats to artificial structures), highlighting the need for careful surveillance of newly built infrastructures.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Airoldi L, Turon X, Perkol-Finkel S et al (2015) Corridors for aliens but not for natives: effects of marine urban sprawl at a regional scale. Divers Distrib 21:755–768

    Article  Google Scholar 

  • Bishop J, Wood CA, Lévêque L et al (2015) Repeated rapid assessment surveys reveal contrasting trends in occupancy of marinas by non-indigenous species on opposite sides of the western English Channel. Mar Pollut Bull 95:699–706

    Article  CAS  PubMed  Google Scholar 

  • Bollen M, Battershill CN, Pilditch CA et al (2017) Desiccation tolerance of different life stages of the invasive marine kelp Undaria pinnatifida: potential for overland transport as invasion vector. J Exp Mar Biol Ecol 496:1–8

    Article  Google Scholar 

  • Bouchemousse S (2015) Dynamique éco-évolutive de deux ascidies congénériques et interferiles, l’une indigène et l’autre introduite, dans leur zone de sympatrie. Doctoral thesis. Université Pierre & Marie Curie (Paris 6). https://tel.archives-ouvertes.fr/tel-01337034

  • Bulleri F, Chapman MG (2010) The introduction of coastal infrastructure as a driver of change in marine environments. J Appl Ecol 47:26–35

    Article  Google Scholar 

  • Castric-Fey A, Girard A, L’Hardy-Halos MT (1993) The distribution of Undaria pinnatifida (Phaeophyceae, Laminariales) on the coast of St Malo (Brittany, France). Bot Mar 36:351–358

  • Clarke Murray C, Pakhomov EA, Therriault TW (2011) Recreational boating: a large unregulated vector transporting marine invasive species. Divers Distrib 17:1161–1172

    Article  Google Scholar 

  • Collinge SK, Ray CJE (2009) Transient patterns in the assembly of vernal pool plant communities. Ecology 90:3313–3323

    Article  PubMed  Google Scholar 

  • Daguin C, Voisin M, Engel C et al (2005) Microsatellites isolation and polymorphism in introduced populations of the cultivated seaweed Undaria pinnatifida (Phaeophyceae, Laminariales). Conserv Genet 6:647–650

    Article  Google Scholar 

  • David P, Pujol B, Viard F et al (2007) Reliable selfing rate estimates from imperfect population genetic data. Mol Ecol 16:2474–2487

    Article  CAS  PubMed  Google Scholar 

  • De Leij R, Epstein G, Brown MP et al (2017) The influence of native macroalgal canopies on the distribution and abundance of the non-native kelp Undaria pinnatifida in natural reef habitats. Mar Biol 164:156

    Article  Google Scholar 

  • Dickson TL, Hopwood JL, Wilsey BJJBI (2012) Do priority effects benefit invasive plants more than native plants? An experiment with six grassland species. Biol Invasions 14:2617–2624

    Article  Google Scholar 

  • Duarte CM, Pitt KA, Lucas CH et al (2013) Is global ocean sprawl a cause of jellyfish blooms? Front Ecol Environ 11:91–97

    Article  Google Scholar 

  • Epstein G, Smale DA (2017) Undaria pinnatifida: a case study to highlight challenges in marine invasion ecology and management. Ecol Evol 7:8624–8642

    Article  PubMed  PubMed Central  Google Scholar 

  • Epstein G, Smale DA (2018a) Between-habitat variability in the population dynamics of a global marine invader may drive management uncertainty. Mar Pollut Bull 137:488–500

    Article  CAS  PubMed  Google Scholar 

  • Epstein G, Smale DA (2018b) Environmental and ecological factors influencing the spillover of the non-native kelp, Undaria pinnatifida, from marinas into natural rocky reef communities. Biol Invasions 20:1049–1072

    Article  PubMed  Google Scholar 

  • Epstein G, Hawkins SJ, Smale DA (2019) Identifying niche and fitness dissimilarities in invaded marine macroalgal canopies within the context of contemporary coexistence theory. Sci Rep-UK 9:8816

    Article  CAS  Google Scholar 

  • Farrell P, Fletcher RJ (2006) An investigation of dispersal of the introduced brown alga Undaria pinnatifida (Harvey) Suringar and its competition with some species on the man-made structures of Torquay Marina (Devon, UK). J Exp Mar Biol Ecol 334:236–243

    Article  Google Scholar 

  • Firth LB, Knights AM, Bridger D et al (2016) Ocean sprawl: challenges and opportunities for biodiversity management in a changing world. Oceanogr Mar Biol 54:193–269

    Google Scholar 

  • Fletcher RL, Farrell P (1999) Introduced brown algae in the North East Atlantic, with particular respect to Undaria pinnatifida (Harvay) Suringar. Helgolander Meeresun 52:259–275

    Article  Google Scholar 

  • Floc’h J-Y, Pajot R, Mouret V (1996) Undaria pinnatifida (Laminariales, phaeophyta) 12 years after its introduction into the Atlantic ocean. Hydrobiologia 326(327):217–222

    Article  Google Scholar 

  • Forrest B, Hopkins G (2013) Population control to mitigate the spread of marine pests: insights from management of the Asian kelp Undaria pinnatifida and colonial ascidian Didemnum vexillum. Manag Biol Invasions 4:317–326

    Article  Google Scholar 

  • Forrest BM, Brown SN, Taylor MD et al (2000) The role natural dispersal mechanisms in the spread of Undaria pinnatifida (Laminariales, Phaeophyceae). Phycologia 39:547–553

    Article  Google Scholar 

  • Fraser CI, Banks SC, Waters JM (2015) Priority effects can lead to underestimation of dispersal and invasion potential. Biol Invasions 17:1–8

    Article  Google Scholar 

  • Gao H, Williamson S, Bustamante CD (2007) A Marko Chain Monte Carlo approach for joint inference of population structure and inbreeding rates from multi-locus genotype data. Genetics 76:1635–1651

    Article  Google Scholar 

  • Gao H, Bryc K, Bustamante CD (2011) On identifying the optimal number of population clusters via the deviance information criterion. PLoS ONE 6:e21014

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Girard-Descatoire A, Castric-Fey A, L’Hardy-Halos M (1997) Inventaire de la faune et de la flore sur les fonds rocheux de Saint-Malo et de Dinard. Report for Direction Régionale de l’Environnement Bretagne, Conseil Régional de Bretagne. Rennes

  • Glasby T, Connell S, Holloway M et al (2007) Nonindigenous biota on artificial structures: could habitat creation facilitate biological invasions? Mar Biol 151:887–895

    Article  Google Scholar 

  • Goldstien SJ, Inglis GJ, Schiel DR et al (2013) Using temporal sampling to improve attribution of source populations for invasive species. PLOS ONE 8:e65656

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goudet J (1995) Fstat (version 1.2): a computer program to calculate F-statistics. J Hered 86:485–486

    Article  Google Scholar 

  • Grulois D (2010) Etude de la dispersion et du recrutement à différentes échelles spatiales chez Undaria pinnatifida, une macro-algue brune introduite le long des côtes bretonnes. Doctoral Thesis. Université Pierre et Marie Curie (Paris 6). https://hal.sorbonne-universite.fr/tel-01111061

  • Grulois D, Leveque L, Viard F (2011) Mosaic genetic structure and sustainable establishment of the invasive kelp Undaria pinnatifida within a bay (Bay of St-Malo, Brittany). Cah Biol Mar 52:485–498

  • Guillot G, Estoup A, Mortier F et al (2005a) A spatial statistical model for landscape genetics. Genetics 170:1261–1280

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Guillot G, Mortier G, Estoup A (2005b) Geneland: a computer package for landscape genetics. Mol Ecol Notes 5:708–711

    Article  CAS  Google Scholar 

  • Guzinski J, Ballenghien M, Daguin-Thiébaut C et al (2018) Population genomics of the introduced and cultivated Pacific kelp Undaria pinnatifida: marinas—not farms—drive regional connectivity and establishment in natural rocky reefs. Evol Appl 11:1582–1597

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Hoffmann AJ, Santelices B (1991) Banks of algal microscopic forms: hypotheses on their functioning and comparisons with seed banks. Mar Ecol-Prog Ser 79:185–194

    Article  Google Scholar 

  • Illian J, Penttinen A, Stoyan H et al (2008) Statistical analysis and modelling of spatial point patterns. Wiley, Chichester

    Google Scholar 

  • James K, Shears NT (2016) Proliferation of the invasive kelp Undaria pinnatifida at aquaculture sites promotes spread to coastal reefs. Mar Biol 163:1–12

    Article  CAS  Google Scholar 

  • Jeunen G-J, Knapp M, Spencer HG et al (2019) Environmental DNA (eDNA) metabarcoding reveals strong discrimination among diverse marine habitats connected by water movement. Mol Ecol Resour 19:426–438

    Article  CAS  PubMed  Google Scholar 

  • Jones O, Wang J (2009) COLONY: a program for parentage and sibship inference from multilocus genotype data. Mol Ecol Resour 10:551–555

    Article  PubMed  Google Scholar 

  • Lodge DM, Simonin PW, Burgiel SW et al (2016) Risk analysis and bioeconomics of invasive species to inform policy and management. Annu Rev Environ Resour 41:453–488

    Article  Google Scholar 

  • Mineur F, Johnson M, Maggs C (2008) Macroalgal introductions by hull fouling on recreational vessels: seaweeds and sailors. Environ Manage 42:667–676

    Article  PubMed  Google Scholar 

  • Morelissen B, Dudley BD, Geange SW et al (2013) Gametophyte reproduction and development of Undaria pinnatifida under varied nutrient and irradiance conditions. J Exp Mar Biol Ecol 448:197–206

    Article  Google Scholar 

  • Murphy JT, Johnson MP, Viard F (2016a) A modelling approach to explore the critical environmental parameters influencing the growth and establishment of the invasive seaweed Undaria pinnatifida in Europe. J Theor Biol 396:105–115

    Article  PubMed  Google Scholar 

  • Murphy JT, Voisin M, Johnson M et al (2016b) Abundance and recruitment data for Undaria pinnatifida in Brest harbour, France: model versus field results. Data in Brief 7:540–545

    Article  PubMed  PubMed Central  Google Scholar 

  • Murphy JT, Johnson MP, Viard F (2017) A theoretical examination of environmental effects on the life cycle schedule and range limits of the invasive seaweed Undaria pinnatifida. Biol Invasions 19:691–702

    Article  Google Scholar 

  • Nyberg CD, Wallentinius I (2005) Can species traits be used to predict marine macroalgal introductions? Biol Invasions 7:265–279

    Article  Google Scholar 

  • Ojaveer H, Galil BS, Campbell ML et al (2015) Classification of non-indigenous species based on their impacts: considerations for application in marine management. PLoS Biol 13:e1002130

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Paetkau D, Slade R, Burden M et al (2004) Genetic assignment methods for the direct, real-time estimation of migration rate: a simulation-based exploration of accuracy and power. Mol Ecol 13:55–65

    Article  CAS  PubMed  Google Scholar 

  • Peteiro C, Sánchez N, Martínez B (2016) Mariculture of the Asian kelp Undaria pinnatifida and the native kelp Saccharina latissima along the Atlantic coast of Southern Europe: an overview. Algal Res 15:9–23

    Article  Google Scholar 

  • Peters K, Sink KJ, Robinson TB (2019) Sampling methods and approaches to inform standardized detection of marine alien fouling species on recreational vessels. J Environ Manage 230:159–167

    Article  PubMed  Google Scholar 

  • Piry S, Alapetite A, Cornuet J-M et al (2004) GeneClass2: a software for genetic assignment and first generation migrants detection. J Hered 95:536–539

    Article  CAS  PubMed  Google Scholar 

  • Pyšek P, Richardson DM (2010) Invasive species, environmental change and management, and health. Annu Rev Environ Resour 35:25–55

    Article  Google Scholar 

  • Rannala B, Mountain JL (1997) Detecting immigration by using multilocus genotypes. Proc Natl Acad Sci USA 94:9197–9201

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Reed DC (1990) The effects of variable settlement and early competition on patterns of kelp recruitment. Ecology 71:776–787

    Article  Google Scholar 

  • Rius M, Turon X, Bernard G et al (2015) Marine invasion genetics: from spatial and temporal patterns to evolutionary outcomes. Biol Invasions 17:869–885

    Article  Google Scholar 

  • Rousset F (2000) Genetic differentiation between individuals. J Evol Biol 13:58–62

    Article  Google Scholar 

  • Rousset F (2008) Genepop’007: a complete re-implementation of the genepop software for Windows and Linux. Mol Ecol Resour 8:103–106

    Article  PubMed  Google Scholar 

  • Saito Y (1975a) Practical significance of algae in Japan: Undaria. Advance of Phycology in Japan, pp 304–320

  • Saito Y (1975b) Undaria. In: Tokida J, Hirose H (eds) Advance in phycology in Japan. Junk publishers, The Hague, pp 304–320

    Google Scholar 

  • Schlather M, Ribeiro PJ Jr, Diggle PJ (2004) Detecting dependence between marks and locations of marked point processes. J R Stat Soc B 66:79–93

    Article  Google Scholar 

  • Shucksmith RJ, Shelmerdine RL (2015) A risk based approach to non-native species management and biosecurity planning. Mar Policy 59:32–43

    Article  Google Scholar 

  • Simberloff D, Martin J-L, Genovesi P et al (2013) Impacts of biological invasions: what’s what and the way forward. Trends Ecol Evol 28:58–66

    Article  PubMed  Google Scholar 

  • Sliwa C, Johnson CR, Hewitt CL (2006) Mesoscale dispersal of the introduced kelp Undaria pinnatifida attached to unstable substrata. Bot Mar 49:396–405

    Article  Google Scholar 

  • South PM, Thomsen MS (2016) The ecological role of invading Undaria pinnatifida: an experimental test of the driver–passenger models. Mar Biol 163:175

    Article  Google Scholar 

  • South PM, Floerl O, Forrest BM et al (2017) A review of three decades of research on the invasive kelp Undaria pinnatifida in Australasia: an assessment of its success, impacts and status as one of the world’s worst invaders. Mar Environ Res 131:243–257

    Article  CAS  PubMed  Google Scholar 

  • Strayer DL, Eviner VT, Jeschke JM et al (2006) Understanding the long-term effects of species invasions. Trends Ecol Evol 21:646–651

    Article  Google Scholar 

  • Ulman A, Ferrario J, Forcada A et al (2019) Alien species spreading via biofouling on recreational vessels in the Mediterranean Sea. J Appl Ecol 56:2620–2629

    Article  Google Scholar 

  • Voisin M (2007) Les processus d’invasions biologiques en milieu côtier marin:le cas de l’algue brune Undaria pinnatifida, cultivée et introduite à l’échelle mondiale. Doctoral Thesis. Université Pierre & Marie Curie (Paris 6), Paris. https://hal.sorbonne-universite.fr/tel-01118270

  • Voisin M, Engel C, Viard F (2005) Differential shuffling of native genetic diversity across introduced region in a brown alga: aquaculture vs. maritime traffic effects. Proc Natl Acad Sci USA 102:5432–5437

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang J (2012) Computationally efficient sibship and parentage assignment from multilocus marker data. Genetics 191:183–194

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Weir BS, Cockerham CC (1984) Estimating F-statistics for the analysis of population structure. Evolution 38:1358–1370

    CAS  PubMed  Google Scholar 

  • Wiegand T, Moloney KA (2014) Handbook of spatial point-pattern analysis in ecology. CRC Press/Taylor & Francis, Boca Raton

    Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the divers the Marine Operations Department (Service Mer & Plongée) of the Roscoff Marine Biological Station (Mathieu Camusat, Yann Fontana, Wilfried Thomas), Caroline Broudin, Ronan Garnier, Sarah Bouchemousse for their help during field surveys and sampling. The authors are also grateful to the marina Director (Frédéric Boccou) and to Patrick Podeur from the Biocéan company who allowed us to conduct these surveys and sampling in the marina and the farm, respectively. We are most grateful to the Biogenouest Genomer core facility for its technical support. This work benefited from the support of the French National Research Agency (ANR) with regards to the IDEALG project (ANR-10-BTBR-04).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Frédérique Viard.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary material 1 (PDF 550 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Salamon, M., Lévêque, L., Ballenghien, M. et al. Spill-back events followed by self-sustainment explain the fast colonization of a newly built marina by a notorious invasive seaweed. Biol Invasions 22, 1411–1429 (2020). https://doi.org/10.1007/s10530-019-02193-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10530-019-02193-5

Keywords

Navigation