Skip to main content

Advertisement

Log in

Processing and Characterization of Extremely Hard and Strong Cu-(0-15 wt pct)Al Alloys

  • Published:
Metallurgical and Materials Transactions A Aims and scope Submit manuscript

Abstract

The present work investigates the microstructure development and mechanical properties of mechanically alloyed and hot-pressed copper (Cu)-X wt pct aluminum (Al) (X = 0, 3, 5, 10, 15) alloys. The morphology of the ball-milled Cu-Al powders changed from coarse flaky structure to small hard agglomerates with the addition of Al. It was observed that the density of Cu-Al samples varied between ~ 95 and 98 pct of theoretical density (ρth) after hot pressing (Temperature: 500 °C, Pressure: 500 MPa, Time: 30 min). The crystallite size of Cu-Al samples decreased for both the milled powders and hot-pressed samples. The XRD and SEM-EDS analyses of the hot-pressed samples confirmed the presence of α-Cu solid solution phases for the Cu alloyed with Al up to 5 wt pct. On the other hand, further addition of Al to Cu leads to the formation of both intermetallic compound (Cu9Al4) and solid solution phase. The nano-indentation tests indicated a significant increase in hardness (2.4 to 7.9 GPa) and elastic modulus (121.1 to 177.4 GPa) of Cu-Al alloys. The Cu-Al alloys were measured with very high compressive strength (813.8 to 1120.2 MPa) and the compressive strain varied in the range of 29.81 to 5.81 pct.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16

Similar content being viewed by others

References

  1. 1 H. Jang, K. Ko, S.J. Kim, R.H. Basch, and J.W. Fash: Wear, 2004, vol. 256, pp. 406–14.

    CAS  Google Scholar 

  2. 2 H.M. Zaw, J.Y.H. Fuh, A.Y.C. Nee, and L. Lu: J. Mater. Process. Technol., 1999, vol. 89, pp. 182–6.

    Google Scholar 

  3. 3 D. Prokoshkina, V.A. Esin, and S. V Divinski: Acta Mater., 2017, vol. 133, pp. 240–6.

    CAS  Google Scholar 

  4. 4 M. Rabiee, H. Mirzadeh, and A. Ataie: J. Ultrafine Grained Nanostructured Mater., 2016, vol. 49, pp. 17–21.

    CAS  Google Scholar 

  5. A. Heidarzadeh and T. Saeid: Rare Met., 2016, vol. 35. pp. 1–11.

    Google Scholar 

  6. 6 A.E. Nassef, A.I. Alateyah, M.A. El-Hadek, and W.H. El-Garaihy: Adv. Mater. Lett., 2017, vol. 8, pp. 717–22.

    CAS  Google Scholar 

  7. 7 G.S. Jawaharram, S.J. Dillon, and R.S. Averback: J. Mater. Res., 2017, vol. 32, pp. 3156–64.

    CAS  Google Scholar 

  8. 8 J. Guo, J. Rosalie, R. Pippan, and Z. Zhang: Scr. Mater., 2017, vol. 133, pp. 41–4.

    CAS  Google Scholar 

  9. J.R. Davis and A.S.M.I.H. Committee (2001) Copper and Copper Alloys, ASM International, Cleveland.

    Google Scholar 

  10. 10 A. Korneva, B. Straumal, A. Kilmametov, R. Chulist, P. Straumal, and P. Zięba: Mater. Charact., 2016, vol. 114, pp. 151–6.

    CAS  Google Scholar 

  11. A.T. Vijayashakthivel, T.N. SrikanthaDath, and R. Krishnamurthy: Proc. Eng., 2014, vol. 97, pp. 56–63.

    CAS  Google Scholar 

  12. M.I. Latypov, E.Y. Yoon, D.J. Lee, R. Kulagin, Y. Beygelzimer, M. SeyedSalehi, and H.S. Kim: Metall. Mater. Trans. A 2014, vol. 45, pp. 2232–41.

    Google Scholar 

  13. 13 S. Tamimi, M. Ketabchi, N. Parvin, M. Sanjari, and A. Lopes: Int. J. Met., 2014, vol. 2014, pp. 1–9.

    Google Scholar 

  14. 14 W. Głuchowski, J. Stobrawa, Z. Rdzawski, and W. Malec: Mater. Sci. Forum, 2011, vol. 674, pp. 177–88.

    Google Scholar 

  15. 15 Y.L. Gong, S.Y. Ren, S.D. Zeng, and X.K. Zhu: Mater. Sci. Eng. A, 2016, vol. 659, pp. 165–71.

    CAS  Google Scholar 

  16. 16 H.S. Park, T. Kimura, T. Murakami, Y. Nagano, K. Nakata, and M. Ushio: Mater. Sci. Eng. A, 2004, vol. 371, pp. 160–9.

    Google Scholar 

  17. 17 H. Wen, T.D. Topping, D. Isheim, D.N. Seidman, and E.J. Lavernia: Acta Mater., 2013, vol. 61, pp. 2769–82.

    CAS  Google Scholar 

  18. 18 H. Wen and E.J. Lavernia: Scr. Mater., 2012, vol. 67, pp. 245–8.

    CAS  Google Scholar 

  19. 19 J.-P. Kruth, P. Peeters, T. Smolderen, J. Bonse, T. Laoui, and L. Froyen: Rev. Int. CFAO dinformatique Graph., 1998, vol. 13, pp. 95–110.

    Google Scholar 

  20. 20 J.-P. Kruth, P. Mercelis, J. Van Vaerenbergh, L. Froyen, and M. Rombouts: Rapid Prototyp. J., 2005, vol. 11, pp. 26–36.

    Google Scholar 

  21. 21 F.A. Calvo, A. Ureng, J.M. Gomez De Salazar, and F. Molleda: J. Mater. Sci., 1988, vol. 23, pp. 2273–80.

    CAS  Google Scholar 

  22. Copper Development Association: Equilibrium Diagrams the Major Types of Phase Transformation, 1992.

  23. 23 C.Y. Chen and W.S. Hwang: Mater. Trans., 2007, vol. 48, pp. 1938–47.

    CAS  Google Scholar 

  24. 24 L. Wu, L. Liu, J. Liu, and R. Zhang: Mater. Trans., 2012, vol. 53, pp. 504–7.

    CAS  Google Scholar 

  25. 25 H.Y. Wang, Y. Chen, Y.W. Liu, F. Li, J.H. Liu, G.-R. Peng, and W.K. Wang: Chin. Phys. Lett., 2009, vol. 26, art. no. 106201.

    Google Scholar 

  26. 26 D.S. Zhou, D.L. Zhang, C. Kong, and P. Munroe: Mater. Sci. Eng. A, 2013, vol. 584, pp. 67–72.

    CAS  Google Scholar 

  27. 27 M.F. Giordana, N. Munoz-vasquez, M. Garro-gonzalez, and M.R. Esquivel: Procedia Mater. Sci., 2015, vol. 9, pp. 262–70.

    CAS  Google Scholar 

  28. 28 R.H. Palma, A.H. Sepúlveda, R.A. Espinoza, and R.C. Montiglio: J. Mater. Process. Technol., 2005, vol. 169, pp. 62–6.

    CAS  Google Scholar 

  29. 29 F. Wang, Y. Li, K. Yamanaka, K. Wakon, K. Harata, and A. Chiba: Mater. Des., 2014, vol. 64, pp. 441–9.

    CAS  Google Scholar 

  30. 30 Y. Guo, G. Liu, H. Jin, Z. Shi, and G. Qiao: J. Mater. Sci., 2011, vol. 46, pp. 2467–73.

    CAS  Google Scholar 

  31. H. Baker, A.S.M. Handbook: Vol 3: Alloy Phase Diagrams, 1992. ASM International, Materials Park

    Google Scholar 

  32. 32 Massalski T: Binary Alloy Phase Diagrams, AIP, Materials Park, Ohio, 1990.

    Google Scholar 

  33. V. Raghavan (2015) Physical Metallurgy: Principles and Practice. Third Edition. Prentice Hall India Pvt Limited, New Delhi

    Google Scholar 

  34. 34 I. Cenoz: Metalurgija, 2010, vol. 16, pp. 115–22.

    CAS  Google Scholar 

  35. 35 H.M. Otte: J. Appl. Phys., 1962, vol. 33, pp. 2892–3.

    CAS  Google Scholar 

  36. J.S. LlewelynLeach: J. Inst. Met., 1964, vol. 92, pp. 93–94.

    Google Scholar 

  37. L. Arnberg and S. Westman: Acta Crystallogr. Sect. A 1978, vol. 34, pp. 399–404.

    Google Scholar 

  38. 38 V. Rajkovic, D. Bozic, and M.T. Jovanovic: Metalurgija, 2007, vol. 13, pp. 309–16.

    CAS  Google Scholar 

  39. 39 W. He, E. Wang, L. Hu, Y. Yu, and H. Sun: J. Mater. Process. Technol., 2008, vol. 208, pp. 205–10.

    CAS  Google Scholar 

  40. 40 A.S. Sharma, K. Biswas, B. Basu, and D. Chakravarty: Metall. Mater. Trans. A, 2011, vol. 42, pp. 2072–84.

    Google Scholar 

  41. 41 A. Nassef and M. El-Hadek: Adv. Mater. Sci. Eng., 2016, vol. 53, pp. 38–42.

    Google Scholar 

  42. 42 C. Martinez, F. Briones, P. Rojas, S. Ordonez, C. Aguilar, and D. Guzman: MRS Adv., 2017, vol. 2, pp. 2831–6.

    CAS  Google Scholar 

  43. A. KhorsandZak, W.H.A. Majid, M.E. Abrishami, and R. Yousefi: Solid State Sci., 2011, vol. 13, pp. 251–56.

    CAS  Google Scholar 

  44. V.D. Mote, Y. Purushotham, and B.N. Dole: J. Theor. Appl. Phys., 2012, vol. 6, art. no. 6.

    Google Scholar 

  45. 45 S.F. Varol, G. Babur, G. Cankaya, and U. Kolemen: RSC Adv., 2014, vol. 4, pp. 56645–53.

    Google Scholar 

  46. 46 T.D. Shen, R.B. Schwarz, and J.D. Thompson: Phys. Rev. B, 2005, vol. 72, art no. 14431.

    Google Scholar 

  47. 47 A. Rohatgi, K.S. Vecchio, and I.G.T. Gray: Acta Mater., 2001, vol. 49, pp. 427–38.

    CAS  Google Scholar 

  48. 48 Y.H. Zhao, Y.T. Zhu, X.Z. Liao, Z. Horita, and T.G. Langdon: Appl. Phys. Lett., 2006, vol. 89, art no. 121906.

    Google Scholar 

  49. 49 Y.H. Zhao, J.F. Bingert, Y.T. Zhu, X.Z. Liao, R.Z. Valiev, Z. Horita, T.G. Langdon, Y.Z. Zhou, and E.J. Lavernia: Appl. Phys. Lett., 2008, vol. 92, art no. 81903.

    Google Scholar 

  50. 50 G. Liu, J. Gu, S. Ni, Y. Liu, and M. Song: Mater. Charact., 2015, vol. 103, pp. 107–19.

    CAS  Google Scholar 

  51. 51 F. Glas: Tribol. und Schmierungstechnik, 2005, vol. 52, pp. 55–63.

    CAS  Google Scholar 

  52. 52 K. Biswas, A.S. Sharma, and B. Basu: Scr. Mater., 2013, vol. 69, pp. 122–6.

    CAS  Google Scholar 

  53. 53 B.K. Prasad: Metall. Mater. Trans. A, 1997, vol. 28, pp. 809–15.

    CAS  Google Scholar 

  54. 54 W.C. Oliver and G.M. Pharr: J. Mater. Res., 1992, vol. 7, pp. 1564–83.

    CAS  Google Scholar 

  55. 55 R. Saha and W.D. Nix: Acta Mater., 2002, vol. 50, pp. 23–38.

    CAS  Google Scholar 

  56. 56 D.M. Ebenstein and L.A. Pruitt: Nano Today, 2006, vol. 1, pp. 26–33.

    Google Scholar 

  57. L.L. Wu, L. Liu, M.S. Qi, J.H. Liu, R.J. Zhang (2012) Advanced Materials Research, vol. 562–564, Trans Tech Publications, Zurich, pp. 196–99.

  58. P. Kucita, S.C. Wang, W.S. Li, R.B. Cook, M.J. Starink: J. Phys. Conf. Ser. vol. 644, 2015, art no. 12010.

    Google Scholar 

  59. 59 K.S. Lee and K. Yong-Nam: Trans. Nonferrous Met. Soc. China, 2013, vol. 23, pp. 341–6.

    CAS  Google Scholar 

  60. 60 J. Chen, Y.N. Shi, and K. Lu: J. Mater. Res., 2005, vol. 20, pp. 2955–9.

    CAS  Google Scholar 

  61. 61 R.R. Chromik, R.P. Vinci, S.L. Allen, and M.R. Notis: J. Mater. Res., 2003, vol. 18, pp. 2251–61.

    CAS  Google Scholar 

  62. 62 J.Y. Zhang, J.T. Zhao, X.G. Li, Y.Q. Wang, K. Wu, G. Liu, and J. Sun: Acta Mater., 2018, vol. 143, pp. 55–66.

    Google Scholar 

  63. 63 F. Misjak, P.B. Barna, A.L. Toth, T. Ujvari, I. Bertoti, and G. Radnoczi: Thin Solid Films, 2008, vol. 516, pp. 3931–4.

    CAS  Google Scholar 

  64. 64 B.J. Briscoe, L. Fiori, and E. Pelillo: J. Phys. D. Appl. Phys., 1998, vol. 31, p. 2395.

    CAS  Google Scholar 

  65. 65 M.M. Shokrieh, M.R. Hosseinkhani, M.R. Naimi-Jamal, and H. Tourani: Polym. Test., 2013, vol. 32, pp. 45–51.

    CAS  Google Scholar 

  66. 66 D. Beegan, S. Chowdhury, and M.T. Laugier: Surf. Coatings Technol., 2005, vol. 192, pp. 57–63.

    CAS  Google Scholar 

  67. 67 S.-R. Jian, C.-H. Tasi, S.-Y. Huang, and C.-W. Luo: J. Alloys Compd., 2015, vol. 622, pp. 601–5.

    CAS  Google Scholar 

  68. 68 B. Lauterbach and D. Gross: Mech. Mater., 1998, vol. 29, pp. 81–92.

    Google Scholar 

  69. 69 E. van der Heide, E.D. Stam, H. Giraud, G. Lovato, N. Akdut, F. Clarysse, P. Caenen, and I. Heikillä: Wear, 2006, vol. 261, pp. 68–73.

    Google Scholar 

Download references

Funding

Ministry of Human Resource and Development, Government of India is gratefully acknowledged for the financial support to procure hot press equipment under plan grants (Departmental Plan-Grant Funds Code No: P828) that is used in the present work.

Conflict of interest

The authors declare that they have no conflict of interest.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Brahma Raju Golla.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Manuscript submitted April 24, 2019.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shaik, M.A., Golla, B.R. & Pitchuka, S.B. Processing and Characterization of Extremely Hard and Strong Cu-(0-15 wt pct)Al Alloys. Metall Mater Trans A 51, 708–724 (2020). https://doi.org/10.1007/s11661-019-05545-x

Download citation

  • Received:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11661-019-05545-x

Navigation