Skip to main content

Advertisement

Log in

Hypoxia: a barricade to conquer the pancreatic cancer

  • Review
  • Published:
Cellular and Molecular Life Sciences Aims and scope Submit manuscript

Abstract

Pancreatic cancer (PC) remains one of the most extremely lethal malignancies worldwide due to late diagnosis and early metastasis, with a 1-year overall survival rate of approximately 20%. The hypoxic microenvironment, induced by intratumoral hypoxia, promotes tumor invasion and progression, leading to chemotherapy or radiotherapy resistance and eventual mortality after treatment of PC. However, the role of the hypoxic microenvironment in PC is complicated and requires further investigation. In this article, we review recent advances regarding the regulation of malignant behaviors in PC, which provide insight into the potential of hypoxic microenvironment activation therapy for the therapeutic agents.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

Abbreviations

ATP:

Adenosine triphosphate

CAF:

Cancer-associated fibroblast

CODD:

C-terminal oxygen-dependent degradation domain

CSC:

Cancer stem cell

ECM:

Extracellular matrix

EMT:

Epithelial to mesenchymal transition

ENO1:

Enolase 1

HIF:

Hypoxia-inducible factor

MDR1:

Multidrug resistance 1

MIIP:

Migration and invasion inhibitory protein

NODD:

N-terminal oxygen-dependent degradation domain

PC:

Pancreatic cancer

PDK1:

Pyruvate dehydrogenase kinase 1

PHD:

Proline hydroxylase domain

ROS:

Reactive oxygen species

VEGF:

Vascular endothelial growth factor

References

  1. Siegel RL, Miller KD, Jemal A (2019) Cancer statistics, 2019. CA Cancer J Clin 69(1):7–34. https://doi.org/10.3322/caac.21551

    Article  PubMed  Google Scholar 

  2. Rahib L, Smith BD, Aizenberg R, Rosenzweig AB, Fleshman JM, Matrisian LM (2014) Projecting cancer incidence and deaths to 2030: the unexpected burden of thyroid, liver, and pancreas cancers in the United States. Cancer Res 74(11):2913–2921. https://doi.org/10.1158/0008-5472.CAN-14-0155

    Article  CAS  PubMed  Google Scholar 

  3. Koong AC, Mehta VK, Le QT, Fisher GA, Terris DJ, Brown JM, Bastidas AJ, Vierra M (2000) Pancreatic tumors show high levels of hypoxia. Int J Radiat Oncol Biol Phys 48(4):919–922. https://doi.org/10.1016/s0360-3016(00)00803-8

    Article  CAS  PubMed  Google Scholar 

  4. Colbert LE, Fisher SB, Balci S, Saka B, Chen Z, Kim S, El-Rayes BF, Adsay NV, Maithel SK, Landry JC, Curran WJ Jr (2015) High nuclear hypoxia-inducible factor 1 alpha expression is a predictor of distant recurrence in patients with resected pancreatic adenocarcinoma. Int J Radiat Oncol Biol Phys 91(3):631–639. https://doi.org/10.1016/j.ijrobp.2014.11.004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Chen J, Luo H, Liu Y, Zhang W, Li H, Luo T, Zhang K, Zhao Y, Liu J (2017) Oxygen-self-produced nanoplatform for relieving hypoxia and breaking resistance to sonodynamic treatment of pancreatic cancer. ACS Nano 11(12):12849–12862. https://doi.org/10.1021/acsnano.7b08225

    Article  CAS  PubMed  Google Scholar 

  6. Ye LY, Zhang Q, Bai XL, Pankaj P, Hu QD, Liang TB (2014) Hypoxia-inducible factor 1alpha expression and its clinical significance in pancreatic cancer: a meta-analysis. Pancreatology 14(5):391–397. https://doi.org/10.1016/j.pan.2014.06.008

    Article  CAS  PubMed  Google Scholar 

  7. Jiang BH, Rue E, Wang GL, Roe R, Semenza GL (1996) Dimerization, DNA binding, and transactivation properties of hypoxia-inducible factor 1. J Biol Chem 271(30):17771–17778. https://doi.org/10.1074/jbc.271.30.17771

    Article  CAS  PubMed  Google Scholar 

  8. Hu CJ, Wang LY, Chodosh LA, Keith B, Simon MC (2003) Differential roles of hypoxia-inducible factor 1alpha (HIF-1alpha) and HIF-2alpha in hypoxic gene regulation. Mol Cell Biol 23(24):9361–9374. https://doi.org/10.1128/mcb.23.24.9361-9374.2003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Tamama K, Kawasaki H, Kerpedjieva SS, Guan J, Ganju RK, Sen CK (2011) Differential roles of hypoxia inducible factor subunits in multipotential stromal cells under hypoxic condition. J Cell Biochem 112(3):804–817. https://doi.org/10.1002/jcb.22961

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Israel M, Schwartz L (2011) The metabolic advantage of tumor cells. Mol Cancer 10:70. https://doi.org/10.1186/1476-4598-10-70

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang J, Ren B, Yang G, Wang H, Chen G, You L, Zhang T, Zhao Y (2019) The enhancement of glycolysis regulates pancreatic cancer metastasis. Cell Mol Life Sci. https://doi.org/10.1007/s00018-019-03278-z

    Article  PubMed  PubMed Central  Google Scholar 

  12. Smith H, Board M, Pellagatti A, Turley H, Boultwood J, Callaghan R (2016) The effects of severe hypoxia on glycolytic flux and enzyme activity in a model of solid tumors. J Cell Biochem 117(8):1890–1901. https://doi.org/10.1002/jcb.25488

    Article  CAS  PubMed  Google Scholar 

  13. Wise DR, Thompson CB (2010) Glutamine addiction: a new therapeutic target in cancer. Trends Biochem Sci 35(8):427–433. https://doi.org/10.1016/j.tibs.2010.05.003

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  14. Semba H, Takeda N, Isagawa T, Sugiura Y, Honda K, Wake M, Miyazawa H, Yamaguchi Y, Miura M, Jenkins DM, Choi H, Kim JW, Asagiri M, Cowburn AS, Abe H, Soma K, Koyama K, Katoh M, Sayama K, Goda N, Johnson RS, Manabe I, Nagai R, Komuro I (2016) HIF-1alpha-PDK1 axis-induced active glycolysis plays an essential role in macrophage migratory capacity. Nat Commun 7:11635. https://doi.org/10.1038/ncomms11635

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  15. Denko NC, Fontana LA, Hudson KM, Sutphin PD, Raychaudhuri S, Altman R, Giaccia AJ (2003) Investigating hypoxic tumor physiology through gene expression patterns. Oncogene 22(37):5907–5914. https://doi.org/10.1038/sj.onc.1206703

    Article  CAS  PubMed  Google Scholar 

  16. Wu X, Qiao B, Liu Q, Zhang W (2015) Upregulation of extracellular matrix metalloproteinase inducer promotes hypoxia-induced epithelial-mesenchymal transition in esophageal cancer. Mol Med Rep 12(5):7419–7424. https://doi.org/10.3892/mmr.2015.4410

    Article  CAS  PubMed  Google Scholar 

  17. Wu Z, Liu X, Liu L, Deng H, Zhang J, Xu Q, Cen B, Ji A (2014) Regulation of lncRNA expression. Cell Mol Biol Lett 19(4):561–575. https://doi.org/10.2478/s11658-014-0212-6

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Lai XL, Huang YH, Li YS, Li GN, Wang LP, Sun R, Ma YS, Feng SY, Chang ZY, Wang XH, Fu D, Han X, Cong XL, Li WP (2015) Differential expression profiling of microRNAs in para-carcinoma, carcinoma and relapse human pancreatic cancer. Clin Transl Oncol 17(5):398–408. https://doi.org/10.1007/s12094-014-1249-8

    Article  CAS  PubMed  Google Scholar 

  19. Hwang HW, Mendell JT (2007) MicroRNAs in cell proliferation, cell death, and tumorigenesis. Br J Cancer 96(Suppl):R40–44

    PubMed  Google Scholar 

  20. Liu B, Yang H, Taher L, Denz A, Grutzmann R, Pilarsky C, Weber GF (2018) Identification of prognostic biomarkers by combined mRNA and miRNA expression microarray analysis in pancreatic cancer. Transl Oncol 11(3):700–714. https://doi.org/10.1016/j.tranon.2018.03.003

    Article  PubMed  PubMed Central  Google Scholar 

  21. Niu Y, Jin Y, Deng SC, Deng SJ, Zhu S, Liu Y, Li X, He C, Liu ML, Zeng Z, Chen HY, Zhong JX, Ye Z, Wang CY, Zhao G (2018) MiRNA-646-mediated reciprocal repression between HIF-1alpha and MIIP contributes to tumorigenesis of pancreatic cancer. Oncogene 37(13):1743–1758. https://doi.org/10.1038/s41388-017-0082-2

    Article  CAS  PubMed  Google Scholar 

  22. Pan L, Zhou L, Yin W, Bai J, Liu R (2018) miR-125a induces apoptosis, metabolism disorder and migrationimpairment in pancreatic cancer cells by targeting Mfn2-related mitochondrial fission. Int J Oncol 53(1):124–136. https://doi.org/10.3892/ijo.2018.4380

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  23. Duguang L, Jin H, Xiaowei Q, Peng X, Xiaodong W, Zhennan L, Jianjun Q, Jie Y (2017) The involvement of lncRNAs in the development and progression of pancreatic cancer. Cancer Biol Ther 18(12):927–936. https://doi.org/10.1080/15384047.2017.1385682

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Chandra Gupta S, Nandan Tripathi Y (2017) Potential of long non-coding RNAs in cancer patients: from biomarkers to therapeutic targets. Int J Cancer 140(9):1955–1967. https://doi.org/10.1002/ijc.30546

    Article  CAS  PubMed  Google Scholar 

  25. Deng SJ, Chen HY, Ye Z, Deng SC, Zhu S, Zeng Z, He C, Liu ML, Huang K, Zhong JX, Xu FY, Li Q, Liu Y, Wang CY, Zhao G (2018) Hypoxia-induced LncRNA-BX111 promotes metastasis and progression of pancreatic cancer through regulating ZEB1 transcription. Oncogene 37(44):5811–5828. https://doi.org/10.1038/s41388-018-0382-1

    Article  CAS  PubMed  Google Scholar 

  26. Li H, Wang X, Wen C, Huo Z, Wang W, Zhan Q, Cheng D, Chen H, Deng X, Peng C, Shen B (2017) Long noncoding RNA NORAD, a novel competing endogenous RNA, enhances the hypoxia-induced epithelial-mesenchymal transition to promote metastasis in pancreatic cancer. Mol Cancer 16(1):169. https://doi.org/10.1186/s12943-017-0738-0

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Ou ZL, Zhang M, Ji LD, Luo Z, Han T, Lu YB, Li YX (2019) Long noncoding RNA FEZF1-AS1 predicts poor prognosis and modulates pancreatic cancer cell proliferation and invasion through miR-142/HIF-1alpha and miR-133a/EGFR upon hypoxia/normoxia. J Cell Physiol. https://doi.org/10.1002/jcp.28188

    Article  PubMed  Google Scholar 

  28. Siegel RL, Miller KD, Jemal A (2017) Cancer statistics, 2017. Cancer J Clin 67(1):7–30. https://doi.org/10.3322/caac.21387

    Article  Google Scholar 

  29. Von Hoff DD, Ervin T, Arena FP, Chiorean EG, Infante J, Moore M, Seay T, Tjulandin SA, Ma WW, Saleh MN, Harris M, Reni M, Dowden S, Laheru D, Bahary N, Ramanathan RK, Tabernero J, Hidalgo M, Goldstein D, Van Cutsem E, Wei X, Iglesias J, Renschler MF (2013) Increased survival in pancreatic cancer with nab-paclitaxel plus gemcitabine. N Engl J Med 369(18):1691–1703. https://doi.org/10.1056/NEJMoa1304369

    Article  CAS  Google Scholar 

  30. Vaccaro V, Sperduti I, Milella M (2011) FOLFIRINOX versus gemcitabine for metastatic pancreatic cancer. N Engl J Med 365(8):768–769. https://doi.org/10.1056/NEJMc1107627author reply 769

    Article  CAS  PubMed  Google Scholar 

  31. Chiorean EG, Cheung WY, Giordano G, Kim G, Al-Batran SE (2019) Real-world comparative effectiveness of nab-paclitaxel plus gemcitabine versus FOLFIRINOX in advanced pancreatic cancer: a systematic review. Ther Adv Med Oncol 11:1758835919850367. https://doi.org/10.1177/1758835919850367

    Article  PubMed  PubMed Central  Google Scholar 

  32. Thomas D, Radhakrishnan P (2019) Tumor-stromal crosstalk in pancreatic cancer and tissue fibrosis. Mol Cancer 18(1):14. https://doi.org/10.1186/s12943-018-0927-5

    Article  PubMed  PubMed Central  Google Scholar 

  33. Gilkes DM, Semenza GL, Wirtz D (2014) Hypoxia and the extracellular matrix: drivers of tumour metastasis. Nat Rev Cancer 14(6):430–439. https://doi.org/10.1038/nrc3726

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Katagiri T, Kobayashi M, Yoshimura M, Morinibu A, Itasaka S, Hiraoka M, Harada H (2018) HIF-1 maintains a functional relationship between pancreatic cancer cells and stromal fibroblasts by upregulating expression and secretion of Sonic hedgehog. Oncotarget 9(12):10525–10535. https://doi.org/10.18632/oncotarget.24156

    Article  PubMed  PubMed Central  Google Scholar 

  35. Comerford KM, Wallace TJ, Karhausen J, Louis NA, Montalto MC, Colgan SP (2002) Hypoxia-inducible factor-1-dependent regulation of the multidrug resistance (MDR1) gene. Cancer Res 62(12):3387–3394

    CAS  PubMed  Google Scholar 

  36. Semenza GL (2010) HIF-1: upstream and downstream of cancer metabolism. Curr Opin Genet Dev 20(1):51–56. https://doi.org/10.1016/j.gde.2009.10.009

    Article  CAS  PubMed  Google Scholar 

  37. Abdalla MY, Ahmad IM, Rachagani S, Banerjee K, Thompson CM, Maurer HC, Olive KP, Bailey KL, Britigan BE, Kumar S (2019) Enhancing responsiveness of pancreatic cancer cells to gemcitabine treatment under hypoxia by heme oxygenase-1 inhibition. Transl Res 207:56–69. https://doi.org/10.1016/j.trsl.2018.12.008

    Article  CAS  PubMed  Google Scholar 

  38. Wang L, Bi R, Yin H, Liu H, Li L (2019) ENO1 silencing impaires hypoxia-induced gemcitabine chemoresistance associated with redox modulation in pancreatic cancer cells. Am J Transl Res 11(7):4470–4480

    CAS  PubMed  PubMed Central  Google Scholar 

  39. Chen N, Chen X, Huang R, Zeng H, Gong J, Meng W, Lu Y, Zhao F, Wang L, Zhou Q (2009) BCL-xL is a target gene regulated by hypoxia-inducible factor-1{alpha}. J Biol Chem 284(15):10004–10012. https://doi.org/10.1074/jbc.M805997200

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  40. Erler JT, Cawthorne CJ, Williams KJ, Koritzinsky M, Wouters BG, Wilson C, Miller C, Demonacos C, Stratford IJ, Dive C (2004) Hypoxia-mediated down-regulation of Bid and Bax in tumors occurs via hypoxia-inducible factor 1-dependent and -independent mechanisms and contributes to drug resistance. Mol Cell Biol 24(7):2875–2889. https://doi.org/10.1128/mcb.24.7.2875-2889.2004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Trollmann R, Richter M, Jung S, Walkinshaw G, Brackmann F (2014) Pharmacologic stabilization of hypoxia-inducible transcription factors protects developing mouse brain from hypoxia-induced apoptotic cell death. Neuroscience 278:327–342. https://doi.org/10.1016/j.neuroscience.2014.08.019

    Article  CAS  PubMed  Google Scholar 

  42. Nagaraju GP, Zakka KM, Landry JC, Shaib WL, Lesinski GB, El-Rayes BF (2019) Inhibition of HSP90 overcomes resistance to chemotherapy and radiotherapy in pancreatic cancer. Int J Cancer 145(6):1529–1537. https://doi.org/10.1002/ijc.32227

    Article  CAS  PubMed  Google Scholar 

  43. Bolderson E, Richard DJ, Zhou BB, Khanna KK (2009) Recent advances in cancer therapy targeting proteins involved in DNA double-strand break repair. Clin Cancer Res 15(20):6314–6320. https://doi.org/10.1158/1078-0432.CCR-09-0096

    Article  CAS  PubMed  Google Scholar 

  44. Blanco FF, Jimbo M, Wulfkuhle J, Gallagher I, Deng J, Enyenihi L, Meisner-Kober N, Londin E, Rigoutsos I, Sawicki JA, Risbud MV, Witkiewicz AK, McCue PA, Jiang W, Rui H, Yeo CJ, Petricoin E, Winter JM, Brody JR (2016) The mRNA-binding protein HuR promotes hypoxia-induced chemoresistance through posttranscriptional regulation of the proto-oncogene PIM1 in pancreatic cancer cells. Oncogene 35(19):2529–2541. https://doi.org/10.1038/onc.2015.325

    Article  CAS  PubMed  Google Scholar 

  45. Yoshida GJ, Saya H (2016) Therapeutic strategies targeting cancer stem cells. Cancer Sci 107(1):5–11. https://doi.org/10.1111/cas.12817

    Article  CAS  PubMed  Google Scholar 

  46. Ning X, Shu J, Du Y, Ben Q, Li Z (2013) Therapeutic strategies targeting cancer stem cells. Cancer Biol Ther 14(4):295–303. https://doi.org/10.4161/cbt.23622

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  47. Rodriguez-Aznar E, Wiesmuller L, Sainz B Jr, Hermann PC (2019) EMT and stemness-key players in pancreatic cancer stem cells. Cancers. https://doi.org/10.3390/cancers11081136

    Article  PubMed  PubMed Central  Google Scholar 

  48. Gzil A, Zarebska I, Bursiewicz W, Antosik P, Grzanka D, Szylberg L (2019) Markers of pancreatic cancer stem cells and their clinical and therapeutic implications. Mol Biol Rep. https://doi.org/10.1007/s11033-019-05058-1

    Article  PubMed  Google Scholar 

  49. Chen S, Zhang J, Chen J, Wang Y, Zhou S, Huang L, Bai Y, Peng C, Shen B, Chen H, Tian Y (2019) RER1 enhances carcinogenesis and stemness of pancreatic cancer under hypoxic environment. J Exp Clin Cancer Res 38(1):15. https://doi.org/10.1186/s13046-018-0986-x

    Article  PubMed  PubMed Central  Google Scholar 

  50. Roper K, Corbeil D, Huttner WB (2000) Retention of prominin in microvilli reveals distinct cholesterol-based lipid micro-domains in the apical plasma membrane. Nat Cell Biol 2(9):582–592. https://doi.org/10.1038/35023524

    Article  CAS  PubMed  Google Scholar 

  51. Maeda K, Ding Q, Yoshimitsu M, Kuwahata T, Miyazaki Y, Tsukasa K, Hayashi T, Shinchi H, Natsugoe S, Takao S (2016) CD133 modulate HIF-1alpha expression under hypoxia in EMT phenotype pancreatic cancer stem-like cells. Int J Mol Sci. https://doi.org/10.3390/ijms17071025

    Article  PubMed  PubMed Central  Google Scholar 

  52. Greeno E, Borazanci E, Gockerman J, Korn R, Saluja A, Von Hoff D (2015) Abstract CT207: Phase I dose escalation and pharmokinetic study of 14-O-phosphonooxymethyltriptolide. Can Res 75(15 Supplement):CT207. https://doi.org/10.1158/1538-7445.am2015-ct207

    Article  Google Scholar 

  53. Noel P, Von Hoff DD, Saluja AK, Velagapudi M, Borazanci E, Han H (2019) Triptolide and its derivatives as cancer therapies. Trends Pharmacol Sci 40(5):327–341. https://doi.org/10.1016/j.tips.2019.03.002

    Article  CAS  PubMed  Google Scholar 

  54. Zhou Y, Zhou Y, Yang M, Wang K, Liu Y, Zhang M, Yang Y, Jin C, Wang R, Hu R (2019) Digoxin sensitizes gemcitabine-resistant pancreatic cancer cells to gemcitabine via inhibiting Nrf2 signaling pathway. Redox Biol 22:101131. https://doi.org/10.1016/j.redox.2019.101131

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  55. Zhao T, Ren H, Jia L, Chen J, Xin W, Yan F, Li J, Wang X, Gao S, Qian D, Huang C, Hao J (2015) Inhibition of HIF-1alpha by PX-478 enhances the anti-tumor effect of gemcitabine by inducing immunogenic cell death in pancreatic ductal adenocarcinoma. Oncotarget 6(4):2250–2262. https://doi.org/10.18632/oncotarget.2948

    Article  PubMed  Google Scholar 

  56. Lang M, Wang X, Wang H, Dong J, Lan C, Hao J, Huang C, Li X, Yu M, Yang Y, Yang S, Ren H (2016) Arsenic trioxide plus PX-478 achieves effective treatment in pancreatic ductal adenocarcinoma. Cancer Lett 378(2):87–96. https://doi.org/10.1016/j.canlet.2016.05.016

    Article  CAS  PubMed  Google Scholar 

Download references

Funding

This study was jointly funded by the National Science Foundation for Distinguished Young Scholars of China (No. 81625016), the National Natural Science Foundation of China (No. 81602085 and 81902428) and the Shanghai Sailing Program (No. 17YF1402500 and 19YF1409400).

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Xianjun Yu or Chen Liang.

Ethics declarations

Conflict of interest

The authors have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tan, Z., Xu, J., Zhang, B. et al. Hypoxia: a barricade to conquer the pancreatic cancer. Cell. Mol. Life Sci. 77, 3077–3083 (2020). https://doi.org/10.1007/s00018-019-03444-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00018-019-03444-3

Keywords

Navigation