Skip to main content
Log in

Characterization of Sicilian rosemary (Rosmarinus officinalis L.) germplasm through a multidisciplinary approach

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

In Sicily, small differences exist between wild and cultivated rosemary biotypes; VOCs and genetic profiles may be a useful tool to distinguish them. A germplasm collection of Rosmarinus officinalis L. was harvested from 15 locations in Sicily. Eleven wild and four cultivated populations were collected and, due to the surveyed area covered, they can be considered as a representative panel of Sicilian genetic background of the species. Ex situ plant collection was transferred to the field cultivation in homogeneous conditions for characterizing through a multidisciplinary approach. The study included morphological traits observations (growth habitus, flower color, number and size of leaves, length and number of internodes), VOC profiles using HS-SPME, genome size by flow cytometry analysis, and genetic characterization by means of DNA and nuclear microsatellite (nSSR) investigation. To detect any pattern within- and among-populations variability, all morphological and chemical data were submitted to ANOVA, while clustering and structure population analysis were carried out using genetic profiles. The present work allowed us to distinguish rather well between wild and cultivated genotypes and to underline the biodiversity richness among rosemary Sicilian germplasm, never highlighted, useful for future breeding programs addressed to exploit this important resource.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5

Similar content being viewed by others

References

  • Alipour M, Saharkhiz MJ (2016) Phytotoxic activity and variation in essential oil content and composition of rosemary (Rosmarinus officinalis L.) during different phenological growth stages. Biocatal Agric Biotechnol 7:271–278

    Google Scholar 

  • Andrade JM, Faustino C, Garcia C, Ladeiras D, Reis CP, Rijo P (2018) Rosmarinus officinalis L: an update review of its phytochemistry and biological activity. Future Sci OA 4:FSO283

    CAS  PubMed  PubMed Central  Google Scholar 

  • Angioni A, Barra A, Cereti E, Barile D, Coisson JD, Arlorio M, Dessi S, Coroneo V, Cabras P (2004) Chemical composition, plant genetic differences, antimicrobial and antifungal activity investigation of the essential oil of Rosmarinus officinalis L. J Agric Food Chem 52:3530–3535

    CAS  PubMed  Google Scholar 

  • Araniti F, Lupini A, Mercati F, Statti GA, Abenavoli MR (2013) Calamintha nepeta L. (Savi) as source of phytotoxic compounds: bio-guided fractionation in identifying biological active molecules. Acta Physiol Plant 35:1979–1988. https://doi.org/10.1007/s11738-013-1236-7

    Article  CAS  Google Scholar 

  • Araniti F, Marrelli M, Lupini A, Mercati F, Statti GA, Abenavoli MR (2014) Phytotoxic activity of Cachrys pungens Jan, a Mediterranean species: separation, identification and quantification of potential allelochemicals. Acta Physiol Plant 36:1071–1083. https://doi.org/10.1007/s11738-013-1482-8

    Article  CAS  Google Scholar 

  • Atak M, Mavi K, Uremis I (2016) Bio-herbicidal effects of oregano and rosemary essential oils on germination and seedling growth of bread wheat cultivars and weeds. Rom Biotechnol Lett 21:11149–11159

    CAS  Google Scholar 

  • Bennetzen JL, Ma J, Devos KM (2005) Mechanisms of recent genome size variation in flowering plants. Ann Bot 95:127–132

    CAS  PubMed  PubMed Central  Google Scholar 

  • Burkhart EP, Jacobson MG (2009) Transitioning from wild collection to forest cultivation of indigenous medicinal forest plants in eastern North America is constrained by lack of profitability. Agrofor Syst 76:437–453

    Google Scholar 

  • Bruvo R, Michiels NK, D'Souza TG, Schulenburg H (2004) A simple method for the calculation of microsatellite genotype distances irrespective of ploidy level. Mol Ecol 13:2101–2106

    CAS  PubMed  Google Scholar 

  • Carimi F, Mercati F, De Michele R, Fiore MC, Riccardi P, Sunseri F (2011) Intra-varietal genetic diversity of the grapevine (Vitis vinifera L.) cultivar ‘Nero d'Avola’ as revealed by microsatellite markers. Genet Res Crop Evol 58(7):967–975. https://doi.org/10.1007/s10722-011-9731-4

    Article  Google Scholar 

  • Carrillo JD, Tena MT (2006) Determination of volatile compounds in antioxidant rosemary extracts by multiple headspace solid-phase microextraction and gas chromatography. Flavour Fragr J 21:626–633. https://doi.org/10.1002/ffj.1630

    Article  CAS  Google Scholar 

  • Carrubba A, Ascolillo V, Pagan Domenech AT, Saiano F, Aiello P (2009) Modifications over time of volatile compounds in Coriander (Coriandrum sativum L). Acta Hort 826:43–49

    CAS  Google Scholar 

  • Carrubba A, Militello M, Saiano F, Pagan Domenech AT (2011) Comparison between different techniques for volatiles analyses in Coriander (Coriandrum sativum L.). Acta Hort 925:151–154

    Google Scholar 

  • Chagné D (2015) Application of the high-resolution melting technique for gene mapping and SNP detection in plants. Methods Mol Biol 1245:151–159. https://doi.org/10.1007/978-1-4939-1966-6_11

    Article  CAS  PubMed  Google Scholar 

  • CREA (2013) PlantA-Res. Rete Nazionale delle Risorse Genetiche Vegetali per l'Alimentazione e l'Agricoltura. Piante Aromatiche e Medicinali. Rosmarino. https://planta-res.politicheagricole.it/schede_descr/ROSMARINO.pdf. Accessed 10 Sep 2019

  • D’Auria M, Racioppi R (2015) The effect of drying on the composition of volatile organic compounds in Rosmarinus officinalis, Laurus nobilis, Salvia officinalis and Thymus serpyllum. A HS-SPME-GC-MS study. J Essent Oil Bear Pl 5:1209–1223. https://doi.org/10.1080/0972060X.2014.895213

    Article  CAS  Google Scholar 

  • De Mastro G, Ruta C, Mincione A, Poiana M (2004) Bio-morphological and chemical characterization of rosemary (Rosmarinus officinalis L.) biotypes. Acta Hort 629:471–482

    Google Scholar 

  • Dolezel J, Bartos J (2005) Plant DNA flow cytometry and estimation of nuclear genome size. Ann Bot 95:99–110

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dolezel J, Greilhuber J, Suda J (2007) Flow cytometry with plant cells. Analysis of genes, chromosomes and genomes. Wiley, Weinheim

    Google Scholar 

  • Drew BT, González‐Gallegos JG, Xiang C-L, Kriebel R, Drummond CP, Walker JB, Sytsma KJ (2017) Salvia united: the greatest good for the greatest number. Taxon 66(1):133–145. https://doi.org/10.12705/661.7

    Article  Google Scholar 

  • Euro+Med (2018) Rosmarinus. https://ww2.bgbm.org/EuroPlusMed/. Accessed 10 Sep 2019

  • Evanno G, Regnaut S, Goudet J (2005) Detecting the number of clusters of individuals using the software STRUCTURE: a simulation study. Mol Ecol 14:2611–2620

    CAS  PubMed  Google Scholar 

  • Ferrer-Gallego P, Ferrer-Gallego R, Roselló R, Peris JB, Guillén A, Gómez J, Laguna E (2014) A new subspecies of Rosmarinus officinalis (Lamiaceae) from the eastern sector of the Iberian Peninsula. Phytotaxa 172:61–70

    Google Scholar 

  • Fu Y, Yang M, Horbach C, Kessler D, Diederichsen A, You FM, Wang H (2017) Patterns of SSR variation in bread wheat (Triticum aestivum L.) seeds under ex situ gene-bank storage and accelerated ageing. Genet Res Crop Evol 64:277–290. https://doi.org/10.1007/s10722-015-0349-9

    Article  CAS  Google Scholar 

  • Garnatje T, Garcia S, Canela MA (2007) Genome size variation from a phylogenetic perspective in the genus Cheirolophus Cass. (Asteraceae): biogeographic implications. Plant Syst Evol 264:117–134

    CAS  Google Scholar 

  • Gianguzzi L, Papini F, Cusimano D (2015) Phytosociological survey vegetation map of Sicily (Mediterranean region). J Maps. https://doi.org/10.1080/17445647.2015.1094969

    Article  Google Scholar 

  • Gomez KA, Gomez AA (1984) Statistical procedures for agricultural research. John Wiley and sons Inc, New York

    Google Scholar 

  • Greilhuber J, Temsch EM, Loureiro JCM (2007) Nuclear DNA content measurement. In: Doležel J, Greilhuber J, Suda J (eds) Flow cytometry with plant cells. Analysis of genes, chromosomes and genomes. Wiley-VCH Verlag, Weinheim, pp 67–101

    Google Scholar 

  • Harkess A, Mercati F, Abbate L, McKain M, Pires JC, Sala T, Sunseri F, Falavigna A, Leebens-Mack J (2016) Retrotransposon proliferation coincident with the evolution of dioecy in asparagus. G3 Genes Genomes Genet 6(9):2679–2685

    CAS  Google Scholar 

  • Hatch LC (2013) Cultivars of woody plants, 2.0th edn, vol 3. TCR Press, WI, p 114

  • Hewson K, Noormohammadi AH, Devlin JM, Mardani K, Ignjatovic J (2009) Rapid detection and non-subjective characterisation of infectious bronchitis virus isolates using high-resolution melt curve analysis and a mathematical model. Arch Virol 154(4):649–660. https://doi.org/10.1007/s00705-009-0357-1

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Homma AKO (1992) The dynamics of extraction in Amazônia: a historical perspective. Adv Econ Bot 9:23–31

    Google Scholar 

  • Homma AKO (1996) Utilization of forest products for amazonian development: potential and limitations. In: Lieberei R, Reisdorff C, Machado AD (eds) Interdisciplinary research on the conservation and sustainable use of the amazonian rain forest and its information requirements. Report on the workshop held in Brasilia, Brazil, November 20–22, 1995. Hamburg, Germany

  • Jiao Y, Jia H, Li X, Chai M, Jia H, Chen Z, Wang G, Chai C, Van de Weg E, Gao Z (2012) Development of simple sequence repeat (SSR) markers from a genome survey of Chinese bayberry (Myrica rubra). BMC Genom 13:201. https://doi.org/10.1186/1471-2164-13-201

    Article  CAS  Google Scholar 

  • Johnston JS, Bennett MD, Rayburn AL, Galbraith DW, Price HJ (1999) Reference standards for determination of DNA content of plant nuclei. Am J Bot 86:609–613

    CAS  PubMed  Google Scholar 

  • Jombart T, Ahmed I (2011) Adegenet 1.3-1: new tools for the analysis of genome-wide SNP data. Bioinformatics 27:3070–3071

    CAS  PubMed  PubMed Central  Google Scholar 

  • Jordán MJ, Lax V, Martínez C, Aouissat M, Sotomayor JA (2011) Chemical intraspecific variability and chemotype determination of Rosmarinus officinalis L. in the region of Murcia. Acta Hort 925:109–114

    Google Scholar 

  • Kamvar ZN, Tabima JF, Grünwald NJ (2014) Poppr: an R package for genetic analysis of populations with clonal, partially clonal, and/or sexual reproduction. Peer J 2:e281

    PubMed  PubMed Central  Google Scholar 

  • Kellogg EA (1998) Relationships of cereal crops and other grasses. Proc Natl Acad Sci USA 95:2005–2010

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lamrani Alaoui M, Hassikou R (2018) Rapid risk assessment to harvesting of wild medicinal and aromatic plant species in Morocco for conservation and sustainable management purposes. Biodivers Conserv 27:2729–2745. https://doi.org/10.1007/s10531-018-1565-3

    Article  Google Scholar 

  • Le S, Josse J, Husson F (2008) FactoMineR: an R package for multivariate analysis. J Stat Softw 25:1–18. https://doi.org/10.18637/jss.v025.i01

    Article  Google Scholar 

  • Leitch IJ, Soltis DE, Soltis PS, Bennett MD (2005) Evolution of DNA amounts across land plants (Embryophytaz). Ann Bot 95:207–217

    CAS  PubMed  PubMed Central  Google Scholar 

  • Lentini F, Venza F (2007) Wild food plants of popular use in Sicily. J Ethnobiol Ethnomed 3:15. https://doi.org/10.1186/1746-4269-3-15

    Article  PubMed  PubMed Central  Google Scholar 

  • Li G, Cervelli C, Ruffoni B, Shachter A, Dudai N (2016) Volatile diversity in wild populations of rosemary (Rosmarinus officinalis L.) from the Tyrrhenian Sea vicinity cultivated under homogeneous environmental conditions. Ind Crops Prod 84:381–390. https://doi.org/10.1016/j.indcrop.2016.02.029

    Article  CAS  Google Scholar 

  • Liu K, Muse SV (2005) Powermarker: an integrated analysis environment for genetic marker analysis. Bioinformatics 21:2128–2129

    CAS  PubMed  Google Scholar 

  • Mamoci E, Cavoski I, Simeone V, Mondelli D, Al-Bitar L, Caboni P (2011) Chemical composition and in vitro activity of plant extracts from Ferula communis and Dittrichia viscosa against postharvest fungi. Molecules 16:2609–2625. https://doi.org/10.3390/molecules16032609

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Mateu-Andrés I, Aguilella A, Boisset F, Currás R, Guara M, Laguna E, Marzo A, Puche MF, Pedrola J (2013) Geographical patterns of genetic variation in rosemary (Rosmarinus officinalis) in the Mediterranean basin. Bot J Linn Soc 171:700–712. https://doi.org/10.1111/boj.12017

    Article  Google Scholar 

  • Médail F, Diadema K (2009) Glacial refugia influence plant diversity patterns in the Mediterranean Basin. J Biogeogr 36:1333–1345. https://doi.org/10.1111/j.1365-2699.2008.02051.x

    Article  Google Scholar 

  • Médail F, Quézel P (1999) Biodiversity hotspots in the Mediterranean Basin: setting global conservation priorities. Conserv Biol 6:1510–1513

    Google Scholar 

  • Mercati F, Leone M, Lupini A, Sorgonà A, Bacchi M, Abenavoli MR, Sunseri F (2013a) Genetic diversity and population structure of a common bean (Phaseolus vulgaris L.) collection from Calabria (Italy). Genet Resour Crop Evol 3:839–852. https://doi.org/10.1007/s10722-012-9879-6

    Article  Google Scholar 

  • Mercati F, Riccardi P, Leebens-Mack J, Abenavoli MR, Falavigna A, Sunseri F (2013b) Single nucleotide polymorphism isolated from a novel EST dataset in garden asparagus (Asparagus officinalis L.). Plant Sci 203–204:115–123

    PubMed  Google Scholar 

  • Mercati F, Longo C, Poma D, Araniti F, Lupini A, Mammano MM, Fiore MC, Abenavoli MR, Sunseri F (2015) Genetic variation of an Italian long shelf-life tomato (Solanum lycopersicon L.) collection by using SSR and morphological fruit traits. Genet Resour Crop Evol 62:721–732. https://doi.org/10.1007/s10722-014-0191-5

    Article  Google Scholar 

  • Mercati F, Fontana I, Gristina AS, Martorana A, El Nagar M, De Michele R, Fici S, Carimi F (2019) Transcriptome analysis and codominant markers development in caper, a drought tolerant orphan crop with medicinal value. Sci Rep 9:2045–2322. https://doi.org/10.1038/s41598-019-46613-x

    Article  CAS  Google Scholar 

  • Migliore G, Saggio Scaffidi C (2007) La filiera delle piante officinali in Sicilia. In: Crescimanno M (ed) Le piante officinali in Sicilia Potenzialità di sviluppo della coltivazione con metodo biologico. Università degli Studi di Palermo Dip. ESAF, Palermo, pp 75–116 (in Italian)

    Google Scholar 

  • Morales R (2010) Género Rosmarinus L. In: Morales R et al (eds) Flora iberica, Real Jardín Botánico, CSIC, Madrid, pp 327 331

  • Mulas M, Mulas G (2005) Cultivar selection from rosemary (Rosmarinus officinalis L.) spontaneous populations in the Mediterranean area. Acta Hort 676:127–133

    Google Scholar 

  • Murray BG (2005) When does intraspecific C-value variation become taxonomically significant? Ann Bot 95:119–125

    CAS  PubMed  PubMed Central  Google Scholar 

  • Napoli EM, Curcuruto G, Ruberto G (2010) Screening of the essential oil composition of wild Sicilian rosemary. Biochem Syst Ecol 4:659–670

    Google Scholar 

  • Nei M (1978) Estimation of average heterozygosity and genetic distance from a small number of individuals. Genetics 89:583–590

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nunziata A, Cervelli C, De Benedetti L (2018) Genotype confidence percentage of SSR HRM profiles as a measure of genetic similarity in Rosmarinus officinalis. Plant Gene 14:64–68

    Google Scholar 

  • Nunziata A, De Benedetti L, Marchioni I, Cervelli C (2019) High resolution melting profiles of 364 genotypes of Salvia rosmarinus in 16 microsatellite loci. Ecol Evol 9:3728–3739

    PubMed  PubMed Central  Google Scholar 

  • Peakall R, Smouse PE (2006) GenAlEx6: genetic analysis in Excel. Population genetic software for teaching and research. Mol Ecol Notes 6:288–295

    Google Scholar 

  • Pellicer J, Estiarte M, Garcia S, Garnatje T, Peñuelas J, Sardans J, Vallès J (2010) Genome size unaffected by moderate changes in climate and phosphorus availability in Mediterranean plants. Afr J Biotech 9(37):6070–6077

    CAS  Google Scholar 

  • Petrov DA, Sangster TA, Johnston JS, Hartl DL, Shaw KL (2000) Evidence for DNA loss as a determinant of genome size. Science 287:1060–1062

    CAS  PubMed  Google Scholar 

  • Pignatti S (1982) Flora d'Italia, vol II. Edagricole:500, Bologna

    Google Scholar 

  • Pintore G, Usai M, Bradesi P, Juliano C, Boatto G, Tomi F, Chessa M, Cerri R, Casanova J (2002) Chemical composition and antimicrobial activity of Rosmarinus officinalis L. oils from Sardinia and Corsica. Flavour Fragr J 17:15–19

    CAS  Google Scholar 

  • Pritchard JK, Wen W (2003) Documentation for STRUCTURE software version 2. https://web.stanford.edu/group/pritchardlab/software/readme/readme.html. Accessed 20 Dec 2019

  • Rosselló JA, Cosín R, Boscaiu M, Vicente O, Martínez I, Soriano P (2006) Intragenomic diversity and phylogenetic systematics of wild rosemaries (Rosmarinus officinalis L. s.l., Lamiaceae) assessed by nuclear ribosomal DNA sequences (ITS). Plant Syst Evol 262:1–12

    Google Scholar 

  • Rosúa JL (1981) El complejo Rosmarinus eriocalyx-tomentosus en la península ibérica. Anales Jard Bot Madrid 2:587–595

    Google Scholar 

  • Salido S, Altarejos J, Nogueras M, Sanchez A, Luque P (2003) Chemical composition and seasonal variations of rosemary oil from Southern Spain. J Essent Oil Res 15:10–14

    CAS  Google Scholar 

  • Sánchez-Camargo AdP, Herrero M (2017) Rosemary (Rosmarinus officinalis) as a functional ingredient: recent scientific evidence. Curr Opin Food Sci 14:13–19

    Google Scholar 

  • Schippmann U, Leaman DJ, Cunningham AB (2002) Impact of cultivation and gathering of Medicinal Plants on biodiversity: global trends and issues. In: FAO, 2002, “Biodiversity and the ecosystem approach in Agriculture, Forestry and Fisheries”, Inter-Departmental Working Group on Biological Diversity for Food and Agriculture, Rome, p 21

  • Segarra-Moragues JG, Gleiser G (2009) Isolation and characterisation of di and tri nucleotide microsatellite loci in Rosmarinus officinalis (Lamiaceae), using enriched genomic libraries. Conserv Genet 3:571–575

    Google Scholar 

  • Sgorbini B, Bicchi C, Cagliero C, Cordero C, Liberto E, Rubiolo P (2015) Herbs and spices: characterization and quantitation of biologically-active markers for routine quality control by multiple head space solid-phase microextraction combined with separative or non-separative analysis. J Chromatogr A 1376:9–17

    CAS  PubMed  Google Scholar 

  • UPOV (2000) Working paper on test guidelines for Rosemary (Rosmarinus officinalis L.). Technical working party for vegetables, thirty-fourth session, Angers, France, September 11–15, 2000. https://www.upov.int/edocs/mdocs/upov/en/twv/34/twv_34_14.pdf Accessed 10 Sep 2019

  • Varela F, Navarrete P, al R, Fanlo M, Melero R, Sotomayor JA, Jordán MJ, Cabot P, Sánchez de Ron D, Calvo R, Cases A (2009) Variability in the chemical composition of wild Rosmarinus officinalis L. Acta Hort 826:167–174

    CAS  Google Scholar 

  • Zaouali Y, Boussaid M (2008) Isozyme markers and volatiles in Tunisian Rosmarinus officinalis L. (Lamiaceae): a comparative analysis of population structure. Biochem Syst Ecol 36:11–21

    CAS  Google Scholar 

  • Zaouali Y, Chograni H, Trimech R, Boussaid M (2012) Genetic diversity and population structure among Rosmarinus officinalis L. (Lamiaceae) varieties: var. typicus Batt. and var. troglodytorum Maire. based on multiple traits. Ind Crops Prod 38:166–176

    Google Scholar 

  • Zaouali Y, Messaoud C, Ben Salah A, Boussaïd M (2005) Oil composition variability among populations in relationship with their ecological areas in Tunisian Rosmarinus officinalis L. Flavour Fragr J 20:512–520

    CAS  Google Scholar 

Download references

Acknowledgements

The collection field was carried out within the Project “Biodiversity preservation—Public Conservation Centers—Safeguard and exploitation of Sicilian herbaceous crops populations and varieties”. PSR Sicilia 2007–2013: Misura 214/2, Azione A.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Alessandra Carrubba.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (PDF 225 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Carrubba, A., Abbate, L., Sarno, M. et al. Characterization of Sicilian rosemary (Rosmarinus officinalis L.) germplasm through a multidisciplinary approach. Planta 251, 37 (2020). https://doi.org/10.1007/s00425-019-03327-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-019-03327-8

Keywords

Navigation