Skip to main content
Log in

Genetic dissection of yield-related traits via genome-wide association analysis across multiple environments in wild soybean (Glycine soja Sieb. and Zucc.)

  • Original Article
  • Published:
Planta Aims and scope Submit manuscript

Abstract

Main conclusion

A total of 41 SNPs were identified as significantly associated with five yield-related traits in wild soybean populations across multiple environments, and the candidate gene GsCID1 was found to be associated with seed weight. These results may facilitate improvements in cultivated soybean.

Abstract

Crop-related wild species contain new sources of genetic diversity for crop improvement. Wild soybean (Glycine soja Sieb. and Zucc.) is the progenitor of cultivated soybean [Glycine max (L.) Merr.] and can be used as an essential genetic resource for yield improvements. In this research, using genome-wide association study (GWAS) in 96 out of 113 wild soybean accessions with 114,090 single nucleotide polymorphisms (SNPs) (with minor allele frequencies ≤ 0.05), SNPs associated with five yield-related traits were identified across multiple environments. In total, 41 SNPs were significantly associated with the traits in two or more environments (significance threshold P ≤ 8.76 × 10–6), with 29, 7, 3, and 2 SNPs detected for 100-seed weight (SW), maturity time (MT), seed yield per plant (SY) and flowering time (FT), respectively. BLAST search against the Glycine soja W05 reference genome was performed, 20 candidate genes were identified based on these 41 significant SNPs. One candidate gene, GsCID1 (Glysoja.04g010563), harbored two significant SNPs—AX-93713187, with a non-synonymous mutation, and AX-93713188, with a synonymous mutation. GsCID1 was highly expressed during seed development based on public information resources. The polymorphisms in this gene were associated with SW. We developed a derived cleaved amplified polymorphic sequence (dCAPS) marker for GsCID1 that was highly associated with SW and was validated as a functional marker. In summary, the revealed SNPs/genes are useful for understanding the genetic architecture of yield-related traits in wild soybean, which could be used as a potential exotic resource to improve cultivated soybean yields.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7

Similar content being viewed by others

Abbreviations

DAF:

Days after flowering

dCAPS:

Derived cleaved amplified polymorphic sequence

FT:

Flowering time

GWAS:

Genome-wide association study

h 2 :

Broad-sense heritability

LD:

Linkage disequilibrium

MT:

Maturity time

PN:

Number of effective pods

SNP:

Single nucleotide polymorphism

SW:

100-Seed weight

SY:

Seed yield per plant

References

  • Birney E, Kumar S, Krainer AR (1993) Analysis of the RNA-recognition motif and RS and RGG domains: conservation in metazoan pre-mRNA splicing factors. Nucleic Acids Res 21(25):5803–5816

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bradbury PJ, Zhang Z, Kroon DE, Casstevens TM, Ramdoss Y, Buckler ES (2007) TASSEL: software for association mapping of complex traits in diverse samples. Bioinformatics 23(19):2633–2635

    Article  CAS  PubMed  Google Scholar 

  • Chapman A, Pantalone VR, Ustun A, Allen FL, Landauellis D, Trigiano RN, Gresshoff PM (2003) Quantitative trait loci for agronomic and seed quality traits in an F2 and F4:6 soybean population. Euphytica 129(3):387–393

    Article  CAS  Google Scholar 

  • Chu SS, Wang J, Zhu Y, Liu SL, Zhou X, Zhang HR, Wang CE, Yang WM, Tian ZX, Cheng H, Yu DY (2017) An R2R3-type MYB transcription factor, GmMYB29, regulates isoflavone biosynthesis in soybean. PLoS Genet 13(5):e1006770

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Dhanapal AP, Ray JD, Singh SK, Hoyos-Villegas V, Smith JR, Purcell LC, King CA, Cregan PB, Song Q, Fritschi FB (2015) Genome-wide association study (GWAS) of carbon isotope ratio (δ 13 C) in diverse soybean [Glycine max (L.) Merr.] genotypes. Theor Appl Genet 128(1):73–91

    Article  CAS  PubMed  Google Scholar 

  • Edae EA, Byrne PF, Haley SD, Lopes MS, Reynolds MP (2014) Genome-wide association mapping of yield and yield components of spring wheat under contrasting moisture regimes. Theor Appl Genet 127(4):791–807

    Article  CAS  PubMed  Google Scholar 

  • Falush D, Stephens M, Pritchard JK (2003) Inference of population structure using multilocus genotype data: linked loci and correlated allele frequencies. Genetics 164(4):1567–1587

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Fang L, Wang Q, Hu Y, Jia Y et al (2017) Genomic analyses in cotton identify signatures of selection and loci associated with fiber quality and yield traits. Nat Genet 49(7):1089–1098

    Article  CAS  PubMed  Google Scholar 

  • Fehr WR, Caviness CE (1977) Stages of soybean development. Ames, IA, USA: Cooperative Extension Service, Agriculture and Home Economics Experiment Station, Iowa State University of Science and Technology

  • Gai JY, Wang YJ, Wu XL, Chen SY (2007) A comparative study on segregation analysis and QTL mapping of quantitative traits in plants—with a case in soybean. Front Agric Chin 1(1):1–7

    Article  Google Scholar 

  • Guzman PS, Diers BW, Neece DJ, Martin SKS, Leroy AR, Grau CR, Hughes TJ, Nelson RL (2007) QTL associated with yield in three backcross-derived populations of soybean. Crop Sci 47(1):111–122

    Article  CAS  Google Scholar 

  • Han YP, Li DM, Zhu D, Li HY, Li XP, Teng WL, Li WB (2012) QTL analysis of soybean seed weight across multi-genetic backgrounds and environments. Theor Appl Genet 125(4):671–683

    Article  CAS  PubMed  Google Scholar 

  • Hao DR, Cheng H, Yin ZT, Cui SY, Zhang D, Wang H, Yu DY (2012) Identification of single nucleotide polymorphisms and haplotypes associated with yield and yield components in soybean (Glycine max) landraces across multiple environments. Theor Appl Genet 124(3):447–458

    Article  CAS  PubMed  Google Scholar 

  • Hong F, Attia K, Wei C, Li KG, He GM, Su W, Zhang QH, Qian XY, Yang JS (2007) Overexpression of the rFCA RNA recognition motif affects morphologies modifications in rice (Oryza sativa L.). Biosci Rep 27(4–5):225–234

    Article  CAS  PubMed  Google Scholar 

  • Hu ZB, Zhang D, Zhang GZ, Kan GZ, Hong DR, Yu DY (2014) Association mapping of yield-related traits and SSR markers in wild soybean (Glycine soja Sieb. and Zucc.). Breeding Sci 63(5):441–449

    Article  CAS  Google Scholar 

  • Hu DZ, Kan GZ, Hu W, Li YL, Hao DR, Li X, Yang H, Yang ZY, He XH, Huang F, Yu DY (2019) Identification of loci and candidate genes responsible for pod dehiscence in soybean via genome-wide association analysis across multiple environments. Front Plant Sci 10:811–811

    Article  PubMed  PubMed Central  Google Scholar 

  • Huang C, Sun H, Xu DY, Chen QY, Liang YM, Wang XF, Xu GH, Tian JG, Wang CL, Li D, Wu LS, Yang XH, Jin WW, Doebley JF, Tian F (2017) ZmCCT9 enhances maize adaptation to higher latitudes. Proc Natl Acad Sci USA 115(2):E334–E341

    PubMed  PubMed Central  Google Scholar 

  • Hyten DL, Pantalone VR, Sams CE, Saxton AM, Landauellis D, Stefaniak TR, Schmidt ME (2004) Seed quality QTL in a prominent soybean population. Theor Appl Genet 109(3):552–561

    Article  CAS  PubMed  Google Scholar 

  • Kato S, Sayama T, Fujii K, Yumoto S, Kono Y, Hwang TY, Kikuchi A, Takada Y, Tanaka Y, Shiraiwa T, Ishimoto M (2014) A major and stable QTL associated with seed weight in soybean across multiple environments and genetic backgrounds. Theor Appl Genet 127(6):1365–1374

    Article  CAS  PubMed  Google Scholar 

  • Korte A, Farlow A (2013) The advantages and limitations of trait analysis with GWAS: a review. Plant Methods 9(1):29

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Kuroda Y, Kaga A, Tomooka N, Yano H, Takada Y, Kato S, Vaughan D (2013) QTL affecting fitness of hybrids between wild and cultivated soybeans in experimental fields. Ecol Evolution 3(7):2150–2168

    Article  Google Scholar 

  • Leamy LJ, Zhang HY, Li CB, Chen CY, Song BH (2017) A genome-wide association study of seed composition traits in wild soybean (Glycine soja). BMC Genomics 18(1):18

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Li JZ, Huang XQ, Heinrichs F, Ganal MW, Roder MS (2005) Analysis of QTLs for yield, yield components, and malting quality in a BC3-DH population of spring barley. Theor Appl Genet 110(2):356–363

    Article  CAS  PubMed  Google Scholar 

  • Li DD, Pfeiffer TW, Cornelius PL (2008) Soybean QTL for yield and yield components associated with Glycine soja alleles. Crop Sci 48(2):571–581

    Article  Google Scholar 

  • Lu X, Li QT, Xiong Q, Li W, Bi YD, Lai YC, Liu XL, Man WQ, Zhang W, Ma B, Chen SY, Zhang JS (2016) The transcriptomic signature of developing soybean seeds reveals the genetic basis of seed trait adaptation during domestication. Plant J 86(6):530–544

    Article  CAS  PubMed  Google Scholar 

  • Ma ZY, He SP, Wang XF et al (2018) Resequencing a core collection of upland cotton identifies genomic variation and loci influencing fiber quality and yield. Nat Genet 50(6):803–813

    Article  CAS  PubMed  Google Scholar 

  • Maris C, Dominguez C, Allain FHT (2005) The RNA recognition motif, a plastic RNA-binding platform to regulate post-transcriptional gene expression. FEBS J 272(9):2118–2131

    Article  CAS  PubMed  Google Scholar 

  • Merk HL, Yarnes SC, Deynze VA, Tong N, Menda N, Mueller LA, Mutschler MA, Loewen SA, Myers JR, Francis DM (2012) Trait diversity and potential for selection indices based on variation among regionally adapted processing tomato germplasm. J Amer Soc Horticult Sci 137(6):427–437

    Article  Google Scholar 

  • Nevo E, Chen GX (2010) Drought and salt tolerances in wild relatives for wheat and barley improvement. Plant Cell Environ 33(4):670–685

    Article  CAS  PubMed  Google Scholar 

  • Nguyen KH, Ha VC, Nishiyama R, Watanabe Y, Leyvagonzalez MA, Fujita Y, Tran UT, Li WQ, Tanaka M, Seki M, Schaller GE, Herreraestrella L, Tran LP (2016) Arabidopsis type B cytokinin response regulators ARR1, ARR10, and ARR12 negatively regulate plant responses to drought. Proc Natl Acad Sci USA 113(11):3090–3095

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Nichols DM, Glover KD, Carlson SR, Specht JE, Diers BW (2006) Fine mapping of a seed protein QTL on soybean linkage group i and its correlated effects on agronomic traits. Crop Sci 46(2):834–839

    Article  Google Scholar 

  • Okishio T, Sasayama D, Hirano T, Akimoto M, Itoh K, Azuma T (2014) Growth promotion and inhibition of the Amazonian wild rice species Oryza grandiglumis to survive flooding. Planta 240(3):459–469

    Article  CAS  PubMed  Google Scholar 

  • Panthee DR, Pantalone VR, West DR, Saxton AM, Sams CE (2005) Quantitative trait loci for seed protein and oil concentration, and seed size in soybean. Crop Sci 45(5):2015–2022

    Article  CAS  Google Scholar 

  • Pathan SM, Vuong TD, Clark KM, Lee JD, Shannon JG, Roberts CA, Ellersieck MR, Burton JW, Cregan PB, Hyten DL, Nguyen NT (2013) Genetic mapping and confirmation of quantitative trait loci for seed protein and oil contents and seed weight in soybean. Crop Sci 53(3):765–774

    Article  CAS  Google Scholar 

  • Placido D, Campbell MT, Folsom JJ, Cui XP, Kruger GR, Baenziger PS, Walia H (2013) Introgression of novel traits from a wild wheat relative improves drought adaptation in wheat. Plant Physiol 161(4):1806–1819

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Qi WW, Zhang FQ, Sun F, Huang YJ, Guan RZ, Yang JS, Luo XJ (2012) Over-expression of a conserved RNA-binding motif (RRM) domain (csRRM2) improves components of Brassica napus yield by regulating cell size. Plant Breed 131(5):614–619

    Article  CAS  Google Scholar 

  • Qi XP, Li MW, Xie M et al (2014) Identification of a novel salt tolerance gene in wild soybean by whole-genome sequencing. Nat Commun 5(1):4340–4340

    Article  CAS  PubMed  Google Scholar 

  • Reinprecht Y, Poysa V, Yu KY, Rajcan I, Ablett GR, Pauls KP (2006) Seed and agronomic QTL in low linolenic acid, lipoxygenase-free soybean (Glycine max (L.) Merrill) germplasm. Genome 49(12):1510–1527

    Article  CAS  PubMed  Google Scholar 

  • Riedelsheimer C, Lisec J, Czedikeysenberg A, Sulpice R, Flis A, Grieder C, Altmann T, Stitt M, Willmitzer L, Melchinger AE (2012) Genome-wide association mapping of leaf metabolic profiles for dissecting complex traits in maize. Proc Natl Acad Sci USA 109(23):8872–8877

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Rossi ME, Orf JH, Liu LJ, Dong ZM, Rajcan I (2013) Genetic basis of soybean adaptation to North American vs Asian mega-environments in two independent populations from Canadian Chinese crosses. Theor Appl Genetics 126(7):1809–1823

    Article  Google Scholar 

  • Shi YY, Gao LL, Wu ZC, Zhang XJ, Wang MM, Zhang CS, Zhang F, Zhou YL, Li ZK (2017) Genome-wide association study of salt tolerance at the seed germination stage in rice. BMC Plant Biol 17(1):92

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Shin J-H, Blay S, McNeney B, Graham J (2006) LDheatmap: An R function for graphical display of pairwise linkage disequilibria between single nucleotide polymorphisms. J Stat Softw 16(1):1–9

    Google Scholar 

  • Shirasawa K, Fukuoka H, Matsunaga H, Kobayashi Y, Kobayashi I, Hirakawa H, Isobe S, Tabata S (2013) Genome-wide association studies using single nucleotide polymorphism markers developed by re-sequencing of the genomes of cultivated tomato. DNA Res 20(6):593–603

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Specht JE, Chase K, Macrander M, Graef GL, Chung J, Markwell JP, Germann M, Orf JH, Lark KG (2001) Soybean response to water: A QTL analysis of drought tolerance. Crop Sci 41(2):493–509

    Article  CAS  Google Scholar 

  • Sun F, Liu CL, Zhang CJ, Qi WW, Zhang XY, Wu ZX, Kong DP, Wang QH, Shang HH, Qian XY, Li FG, Yang JS (2012) A conserved RNA recognition motif (RRM) domain of Brassica napus FCA improves cotton fiber quality and yield by regulating cell size. Mol Breed 30(1):93–101

    Article  CAS  Google Scholar 

  • Tian F, Zhu ZF, Zhang BS, Tan LB, Fu YC, Wang XK, Sun CQ (2006) Fine mapping of a quantitative trait locus for grain number per panicle from wild rice (Oryza rufipogon Griff.). Theor Appl Genetics 113(4):619–629

    Article  CAS  Google Scholar 

  • Treuren RV, Hoekstra R, Hintum TV (2017) Inventory and prioritization for the conservation of crop wild relatives in The Netherlands under climate change. Biol Cons 216:123–139

    Article  Google Scholar 

  • Tripet BP, Mason KE, Eilers BJ, Bruns J, Powell P, Fischer AM, Valérie C (2014) Structural and biochemical analysis of the Hordeum vulgare L HvGR-RBP1 protein, a glycine-rich RNA-binding protein involved in the regulation of barley plant development and stress response. Biochemistry 53(50):7945–7960

    Article  CAS  PubMed  Google Scholar 

  • Turner SD (2014) qqman: an R package for visualizing GWAS results using Q-Q and manhattan plots. Biorxiv

  • Vieira AJD, Oliveira DAA, Soares TCB, Schuster I, Piovesan ND, Martinez CA, Barros EDG, Moreira MA (2006) Use of the QTL approach to the study of soybean trait relationships in two populations of recombinant inbred lines at the F7 and F8 generations. Brazilian J Plant Physiol 18(2):281–290

    Article  Google Scholar 

  • Vuong TD, Sonah H, Meinhardt CG, Deshmukh R, Kadam S, Nelson RL, Shannon JG, Nguyen HT (2015) Genetic architecture of cyst nematode resistance revealed by genome-wide association study in soybean. BMC Genomics 16(1):593–593

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Wang XZ, Jiang GL, Green M, Scott RA, Song QJ, Hyten DL, Cregan PB (2014) Identification and validation of quantitative trait loci for seed yield, oil and protein contents in two recombinant inbred line populations of soybean. Mol Genetics Genomics 289(5):935–949

    Article  CAS  Google Scholar 

  • Wang QX, Xie WB, Xing HK, Yan J, Meng XZ, Li XH, Fu XK, Xu JY, Lian XM, Yu SB, Xing YZ, Wang GW (2015) Genetic architecture of natural variation in rice chlorophyll content revealed by a genome-wide association study. Mol Plant 8(6):946–957

    Article  CAS  PubMed  Google Scholar 

  • Wang J, Chu SS, Zhang HR, Zhu Y, Cheng H, Yu DY (2016) Development and application of a novel genome-wide SNP array reveals domestication history in soybean. Sci Rep 6(1):20728–20728

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Xie MT, Chen HY, Huang L, O’Neil RC, Shokhirev MN, Ecker JR (2018) A B-ARR-mediated cytokinin transcriptional network directs hormone cross-regulation and shoot development. Nat Commun 9(1):1604

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Xie M, Chung CYL, Li MM et al (2019) A reference-grade wild soybean genome. Nat Commun 10(1):1–12

    Article  CAS  Google Scholar 

  • Xu XY, Zeng L, Tao Y, Vuong T, Wan JR, Boerma R, Noe J, Li Z, Finnerty S, Pathan SM, Shannon JG, Nguyen HT (2013) Pinpointing genes underlying the quantitative trait loci for root-knot nematode resistance in palaeopolyploid soybean by whole genome resequencing. Proc Natl Acad Sci USA 110(33):13469–13474

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Yang KW, Moon JK, Jeong NH, Chun HK, Kang ST, Back KW, Jeong SC (2011) Novel major quantitative trait loci regulating the content of isoflavone in soybean seeds. Genes Genom 33(6):685–692

    Article  CAS  Google Scholar 

  • Yang Q, Li Z, Li WQ, Ku LX, Wang C, Ye JR, Li K, Yang N, Li YP, Zhong T, Li JS, Chen YH, Yan JB, Yang XH, Xu ML (2013) CACTA-like transposable element in ZmCCT attenuated photoperiod sensitivity and accelerated the postdomestication spread of maize. Proc Natl Acad Sci USA 110(42):16969–16974

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang YH, He JB, Wang YF, Xing GN, Zhao JM, Li Y, Yang SP, Palmer RG, Zhao TJ, Gai JY (2015) Establishment of a 100-seed weight quantitative trait locus–allele matrix of the germplasm population for optimal recombination design in soybean breeding programmes. J Exp Bot 66(20):6311–6325

    Article  CAS  PubMed  Google Scholar 

  • Zhang JP, Song QJ, Cregan PB, Jiang GL (2016a) Genome-wide association study, genomic prediction and marker-assisted selection for seed weight in soybean (Glycine max). Theor Appl Genet 129(1):117–130

    Article  CAS  PubMed  Google Scholar 

  • Zhang X, Warburton ML, Setter T, Liu H, Xue YD, Yang N, Yan JB, Xiao YJ (2016b) Genome-wide association studies of drought-related metabolic changes in maize using an enlarged SNP panel. Theor Appl Genet 129(8):1449–1463

    Article  CAS  PubMed  Google Scholar 

  • Zhang HY, Song QJ, Griffin JD, Song BH (2017) Genetic architecture of wild soybean (Glycine soja) response to soybean cyst nematode (Heterodera glycines). Mol Genet Genomics 292(6):1257–1265

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Zhang W, Liao XL, Cui YM, Ma WY, Zhang XN, Du HY, Ma YJ, Ning LH, Wang H, Huang F, Yang H, Kan GZ, Yu DY (2019) A cation diffusion facilitator, GmCDF1, negatively regulates salt tolerance in soybean. PLoS Genet 15(1):e1007798

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Zubo YO, Blakley IC, Yamburenko MV, Worthen JM, Street IH, Francozorrilla JM, Zhang WJ, Hill K, Raines T, Solano R, Kieber JJ, Loraine AE, Schaller GE (2017) Cytokinin induces genome-wide binding of the type-B response regulator ARR10 to regulate growth and development in Arabidopsis. Proc Natl Acad Sci USA 114(29):E5995–E6004

    Article  CAS  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

This work was supported in part by the Ministry of Science and Technology (2016YFD0100304, 2017YFE0111000), the Key Transgenic Breeding Program of China (2016ZX08004-003, 2016ZX08009003-004), and the National Natural Science Foundation of China (31871649, 31671715).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Guizhen Kan.

Ethics declarations

Ethical standards

This research complied with ethical standards.

Conflict of interest

The authors declare that they have no conflict of interest.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

Below is the link to the electronic supplementary material.

Supplementary file1 (XLSX 83 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hu, D., Zhang, H., Du, Q. et al. Genetic dissection of yield-related traits via genome-wide association analysis across multiple environments in wild soybean (Glycine soja Sieb. and Zucc.). Planta 251, 39 (2020). https://doi.org/10.1007/s00425-019-03329-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • DOI: https://doi.org/10.1007/s00425-019-03329-6

Keywords

Navigation