Skip to main content

Advertisement

Log in

Synthesis and Characterization of Ag@Fe3O4 Hetero Nanoparticles: A Highly Active Catalyst for Hydrogen Evolution Reactions

  • Communication
  • Published:
Journal of Inorganic and Organometallic Polymers and Materials Aims and scope Submit manuscript

Abstract

Highly active hetero nanoparticles (NPs), Ag@Fe3O4 were synthesized and characterized. These hetero structured materials are formed by allowing a growth of silver NPs on a magnetite surface in the presence of an oleylamine. Thus developed material has been characterized through PXRD, TEM and SEM-EDX analysis. Further, these materials have been evaluated in the hydrogen evolution reactions (HER) in the presence of a weak electrolyte. The current density obtained for hydrogen evolution is − 10 mA cm−2 at an over potential of 33 mV using these NPs.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

References

  1. M.B. Gawande, P.S. Branco, R.S. Verma, Chem. Soc. Rev. 42, 3371–3393 (2013)

    Article  CAS  Google Scholar 

  2. S. Laurent, D. Forge, M. Port, A. Roch, C. Robic, L.V. Elst, R.N. Muller, Chem. Rev. 108, 2064–2110 (2008)

    Article  CAS  Google Scholar 

  3. A.-H. Liu, E.L. Salbas, F.Schüth, Angew. Chem. Int. Ed. 46, 1222–1244 (2007)

    Article  Google Scholar 

  4. M.R. Ghazanfari, M. Kashefi, S.F. Shams, M.R. Jaafari, Biochem. Res. Int. (2016). https://doi.org/10.1155/2016/7840161

    Article  PubMed  PubMed Central  Google Scholar 

  5. N.M. Haung, H.N. Lim, S. Radiman, P.S. Khiew, W.S. Chiu, R. Hashim, C.H. Chia, Colloids Surf. A Physiochem. Eng. Asp. 353, 69–76 (2010)

    Article  Google Scholar 

  6. K. Tschulik, C.B. -McAuley, H.-S. Toh, E.J.E. Stuart, R.G. Compton, Phys. Chem. Chem. Phys. 16, 616–623 (2014)

    Article  CAS  Google Scholar 

  7. B. Chudasama, A.K. Vala, N. Andhariya, R.V. Upadhya, R.V. Mehta, Nano Res. 2, 955–965 (2009)

    Article  CAS  Google Scholar 

  8. T. Mosaiab, C.J. Jeong, G.J. Shin, K.H. Choi, S.K. Lee, I. Lee, I. In, S.Y. Park, Mater. Sci. Eng. C 33, 3786–3794 (2013)

    Article  CAS  Google Scholar 

  9. H. Gu, Z. Yang, J. Gao, C.K. Chang, B. Xu, J. Am. Chem. Soc. 127, 34–35 (2005)

    Article  CAS  Google Scholar 

  10. M.A. Nasseri, S. Behravesh, A. Allahresani, M. Kazemnejadi, Org. Chem. Res. 5, 190–201 (2019)

    Google Scholar 

  11. H. Veisi, F. Ghorbani, Appl. Organometal. Chem. 31, e3711 (2017)

    Article  Google Scholar 

  12. C. Yong, X. Chen, Q. Xiang, Q. Li, X. Xing, Bioact. Mater. 3, 80–86 (2018)

    Article  Google Scholar 

  13. E.I. Silva, J. Rivas, L.M.L. Isidro, M.A.L. Quintela, J. Non-cryst. Solids 353, 829–831 (2007)

    Article  Google Scholar 

  14. L. Zhang, Y.-H. Dou, H.-C. Gu, J. Colloid Interface Sci. 297, 660–664 (2006)

    Article  CAS  Google Scholar 

  15. I. Shick, D. Gehrig, M. Montigny, B. Balke, M. Manthofer, A. Henkel, F. Laquai, W. Tremel, Chem. Mater. 27, 4877–4884 (2015)

    Article  Google Scholar 

  16. J. Jiang, H. Gu, H. Shao, E. Devlin, G.C. Papaefthymiou, J.Y. Ying, Adv. Mater. 20, 4403–4407 (2008)

    Article  CAS  Google Scholar 

  17. T.M. Chan, Y.Y. Levitin, O.S. Kryskiv, I.A. Vedernikova, J. Chem. Pharm. Res. 7, 816–819 (2015)

    CAS  Google Scholar 

  18. S. Dunn, Int. J. Hydrog. Energy 27, 235–264 (2002)

    Article  CAS  Google Scholar 

  19. M. Balat, H. Balat, Energy Sources, Part A 31, 1280–1293 (2009)

    Article  CAS  Google Scholar 

  20. J.L. Dempsey, B.S. Brunschwig, J.R. Wrinkler, H.B. Gray, Acc. Chem. Res. 42, 1995–2004 (2009)

    Article  CAS  Google Scholar 

  21. B.M. Choudary, M.L. Kantam, K.V.S. Ranganath, K.K. Rao, Angew. Chem. Int. Ed. 44, 322–325 (2005)

    Article  CAS  Google Scholar 

  22. A. Lulianelli, P. Ribeirinha, A. Mendes, A. Basile, Renew. Sustain. Energy Rev. 29, 355–368 (2014)

    Article  Google Scholar 

  23. N. Dubouis, A. Grimaud, Chem. Sci. 10, 9165–9181 (2019)

    Article  CAS  Google Scholar 

  24. M.G. Walter, E.L. Warren, J.R. McKone, S.W. Bottcher, Q. Mi, E.A. Santori, N.S. Lewis, Chem. Rev. 110, 6446–6473 (2010)

    Article  CAS  Google Scholar 

  25. B.C. Steele, A. Heinzel, Nature 414, 345–352 (2001)

    Article  CAS  Google Scholar 

  26. P.C.K. Vesborg, T.F. Jaramillo, RSC Adv. 2, 7933–7947 (2012)

    Article  CAS  Google Scholar 

  27. T.F. Jaramillo, K.P. Jorgensen, J. Bonde, J.H. Nielsen, S. Horch, I. Chorkendorf, Science 317, 100–102 (2007)

    Article  CAS  Google Scholar 

  28. C. Lupi, A. Dell’Era, M. Pasquali, Int. J. Hydrog. Energy 34, 2101–2106 (2009)

    Article  CAS  Google Scholar 

  29. J. Greeley, T.F. Jaramillo, J. Bonde, I. Chorkendorff, J.K. Nørskov, Nat. Mater. 5, 909–913 (2006)

    Article  CAS  Google Scholar 

  30. S. Cobo, J. Heidkamp, P.-A. Jacques, J. Fize, V. Fourmond, L. Guetaz, B. Jousselme, V. Ivanova, H. Dau, S. Palacin, M. Fontecave, V. Artero, Nat. Mater. 11, 802–807 (2012)

    Article  CAS  Google Scholar 

  31. Y. Zheng, Y. Jiao, Y. Zhu, L.H. Li, Y. Han, Y. Chen, A.D. Mietek, J.S.Z. Qiao, Nat. Commun. 5, 3783 (2014)

    Article  Google Scholar 

  32. Y. Meng, L. Aldous, S.R. Beilding, R.G. Compton, Phys. Chem. Chem. Phys. 14, 5222–5228 (2012)

    Article  CAS  Google Scholar 

  33. Z. Chen, D. Cummins, B.N. Reinecke, E. Clark, M.K. Sunkara, T.F. Jaramillo, Nano Lett. 11, 4168–4175 (2011)

    Article  CAS  Google Scholar 

  34. P. Jiang, Q. Liu, Y. Liang, J. Tian, A.M. Asiri, X. Sun, Angew. Chem. Int. Ed. 53, 12855–12859 (2014)

    Article  CAS  Google Scholar 

  35. Y. Shi, Y. Xu, S. Zhuo, J. Zhang, B. Zhang, ACS Appl. Mater. Interfaces 7, 2376–2384 (2015)

    Article  CAS  Google Scholar 

  36. J.M. McEnaney, J.C. Crompton, J.F. Callejas, E.J. Popczun, C.G. Read, N.S. Lewis, R.E. Schaak, Chem. Commun. 50, 11026–11028 (2014)

    Article  CAS  Google Scholar 

  37. T.-H. Lu, C.-J. Chen, M. Basu, C.-G. Ma, R.S. Liu, Chem. Commun. 51, 17012–17015 (2015)

    Article  CAS  Google Scholar 

  38. M. Sahu, M. Shaikh, S. Khilari, K.V.S. Ranganath, Cat. Green Chem. Eng. 1, 105–111 (2018)

    Article  Google Scholar 

  39. M.A. Amin, S.A. Fadlallah, G.S. Alosaimi, Int. J. Hydrog. Energy 39, 19519–19540 (2014)

    Article  CAS  Google Scholar 

  40. X. Li, H. Si, J.Z. Niu, H. Shen, C. Zhou, H. Yuan, H. Wang, L. Ma, L.S. Li, Dalton Trans. 39, 10984–10989 (2010)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This work was partially supported by Department of Science and Technology (DST, SERB: SB/IC-10/2013). Ms. Akanksha Rai kindly acknowledged to CSIR project [No. 01(2968)/19/EMR-II] for providing fellowship. Kind acknowledgement to Dr. Santimoy Khilari for his suggestions for experimental work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kalluri V. S. Ranganath.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Sahu, M., Shaikh, M., Rai, A. et al. Synthesis and Characterization of Ag@Fe3O4 Hetero Nanoparticles: A Highly Active Catalyst for Hydrogen Evolution Reactions. J Inorg Organomet Polym 30, 1002–1007 (2020). https://doi.org/10.1007/s10904-019-01439-y

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10904-019-01439-y

Keywords

Navigation