Skip to main content
Log in

Interactions between intercropped Avena sativa and Agropyron cristatum for nitrogen uptake

  • Regular Article
  • Published:
Plant and Soil Aims and scope Submit manuscript

Abstract

Aims

The effect of cropping regime on nitrogen (N) uptake in two coexisting plant grass species (Avena sativa and Agropyron cristatum) was investigated.

Methods

The two grass species were cultivated by monocropping or intercropping. 15N-labeling was used to examine N uptake of NH4+ versus NO3 at 0–5 cm and 5–15 cm soil depths.

Results

The aboveground and total biomass of intercropped A. sativa was 1.3 times greater than monocropped A. sativa. The biomass of A. cristatum did not change between cropping systems. In the 0–5 cm soil layer, uptake of NO3 by A. sativa was 0.5 times less in the intercropped system than in the monocropped system, whereas uptake of NO3 by A. cristatum was 2.0 times more in the intercropped system. In the 5–15 cm depth, intercropping did not change N uptake by A. sativa but decreased NO3 uptake to 0.6 times by A. cristatum.

Conclusions

Complementarity in N uptake between A. sativa and A. cristatum in the upper 0–5 cm soil layer is conducive to biomass accumulation. Intercropped A. sativa and A. cristatum does not compete strongly for soil resources and can alter their N uptake patterns to optimize biomass production.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Ashton IW, Miller AE, Bowman WD, Suding KN (2010) Niche complementarity due to plasticity in resource use: plant partitioning of chemical N forms. Ecology 91(11):3252–3260

    Article  PubMed  Google Scholar 

  • Bais HP, Weir TL, Perry LG, Gilroy S, Vivanco JM (2006) The role of root exudates in rhizosphere interactions with plants and other organisms. Annu Rev Plant Biol 57:233–266

    Article  PubMed  CAS  Google Scholar 

  • Bertness MD, Callaway R (1994) Positive interactions in communities. Trends Ecol Evol 9(5):191–193

    Article  PubMed  CAS  Google Scholar 

  • Britto DT, Kronzucker HJ (2013) Ecological significance and complexity of N-source preference in plants. Ann Bot 112(6):957–963

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Brooker RW (2006) Plant–plant interactions and environmental change. New Phytol 171(2):271–284

    Article  PubMed  Google Scholar 

  • Bruno JF, Stachowicz JJ, Bertness MD (2003) Inclusion of facilitation into ecological theory. Trends Ecol Evol 18(3):119–125

    Article  Google Scholar 

  • Callaway RM (1997) Positive interactions in plant communities and the individualistic-continuum concept. Oecologia 112(2):143–149

    Article  PubMed  Google Scholar 

  • Callaway RM, Walker LR (1997) Competition and facilitation: a synthetic approach to interactions in plant communities. Ecology 78(7):1958–1965

    Article  Google Scholar 

  • Casper BB, Jackson RB (1997) Plant competition underground. Annu Rev Ecol Syst 28(1):545–570

    Article  Google Scholar 

  • Crawford NM, Glass AD (1998) Molecular and physiological aspects of nitrate uptake in plants. Trends Plant Sci 3(10):389–395

    Article  Google Scholar 

  • Cui JH, Yu CQ, Qiao N, Xu XL, Tian YQ, Ouyang H (2017) Plant preference for NH4+ versus NO3 at different growth stages in an alpine agroecosystem. Field Crop Res 201:192–199

    Article  Google Scholar 

  • Elser JJ, Bracken MES, Cleland EE, Gruner DS, Harpole WS, Hillebrand H, Ngai JT, Seabloom EW, Shurin JB, Smith JE (2007) Global analysis of nitrogen and phosphorus limitation of primary producers in freshwater, marine and terrestrial ecosystems. Ecol Lett 10(12):1135–1142

    Article  PubMed  Google Scholar 

  • Evans JR (1983) Nitrogen and photosynthesis in the flag leaf of wheat (Triticum aestivum L.). Plant Physiol 72(2):297–302

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Faget M, Nagel KA, Walter A, Herrera JM, Jahnke S, Schurr U, Temperton VM (2013) Root-root interactions: extending our perspective to be more inclusive of the range of theories in ecology and agriculture using in-vivo analyses. Ann Bot 112(2):253–266

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Fujita K, Ofosu-Budu KG, Ogata S (1992) Biological nitrogen fixation in mixed legume-cereal cropping systems. Plant Soil 141(1–2):155–175

    Article  CAS  Google Scholar 

  • Grace JB, Tilman D (1990) Perspectives on plant competition. Academic Press, San Diego

    Google Scholar 

  • Grossman JD, Rice KJ (2012) Evolution of root plasticity responses to variation in soil nutrient distribution and concentration. Evol Appl 5(8):850–857

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hafenrichter AL, Schwendiman JL, Harris HL, MacLauchlan RS, Miller HW (1968) Grasses and legumes for soil conservation in the Pacific northwest and great basin states. USDA Soil Conservation Service, Agriculture Handbook No 339

  • Harper JL (1977) Population biology of plants. Academic Press, New York

    Google Scholar 

  • Harryolde V, Sabine G (2010) Competitive interactions between two meadow grasses under nitrogen and phosphorus limitation. Funct Ecol 24(4):877–886

    Article  Google Scholar 

  • Hauggaard-Nielsen H, Jørnsgaard B, Kinane J, Jensen ES (2008) Grain legume–cereal intercropping: the practical application of diversity, competition and facilitation in arable and organic cropping systems. Renew Agr Food Syst 23(1):3–12

    Article  Google Scholar 

  • Hodge A, Robinson D, Griffiths BS, Fitter AH (1999) Why plants bother: root proliferation results in increased nitrogen capture from an organic patch when two grasses compete. Plant Cell Environ 22(7):811–820

    Article  Google Scholar 

  • Jones DL, Healey JR, Willett VB, Farrar JF, Hodge A (2005) Dissolved organic nitrogen uptake by plants-an important n uptake pathway? Soil Biol Biochem 37(3):413–423

    Article  CAS  Google Scholar 

  • Kraiser T, Gras DE, Gutierrez AG, Gonzalez B, Gutierrez RA (2011) A holistic view of nitrogen acquisition in plants. J Exp Bot 62(4):1455–1466

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kristensen HL, Thorup-Kristensen K (2004) Root growth and nitrate uptake of three different catch crops in deep soil layers. Soil Sci Soc Am J 68(2):529–537

    Article  CAS  Google Scholar 

  • Lamb EG, Kembel SW, Cahill JF (2009) Shoot, but not root, competition reduces community diversity in experimental mesocosms. J Ecol 97(1):155–163

    Article  Google Scholar 

  • LeBauer DS, Treseder KK (2008) Nitrogen limitation of net primary productivity in terrestrial ecosystems is globally distributed. Ecology 89:371–379

    Article  PubMed  Google Scholar 

  • Lipson DA, Bowman WD, Monson RK (1996) Luxury uptake and storage of nitrogen in the rhizomatous Alpine herb, Bistorta Bistortoides. Ecology 77(4):1277–1285

    Article  Google Scholar 

  • Liu Q, Qiao N, Xu X, Xin X, Han JY, Tian Y, Ouyang H, Kuzyakov Y (2016) Nitrogen acquisition by plants and microorganisms in a temperate grassland. Sci Rep 6:22642

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Liu M, Qiao N, Zhang Q, Xu X (2018) Cropping regimes affect NO3 versus NH4+ uptake by Zea mays and Glycine max. Plant Soil 426:241–251

    Article  CAS  Google Scholar 

  • Loreau M, Naeem S, Inchausti P, Bengtsson J, Grime JP, Hector A, Hooper DU, Huston MA, Raffaelli D, Schmid B, Tilman D, Wardle DA (2001) Biodiversity and ecosystem functioning: current knowledge and future challenges. Science 294(5543):804–808

    Article  PubMed  CAS  Google Scholar 

  • Mazancourt CD, Schwartz MW (2012) Starve a competitor: evolution of luxury consumption as a competitive strategy. Theor Ecol 5(1):37–49

    Article  Google Scholar 

  • McKane RB, Johnson LC, Shaver GR, Nadelhoffer KJ, Rastetter EB, Fry B, Giblin AE, Kielland K, Kwiatkowski BL, Laundre JA, Murray G (2002) Resource-based niches provide a basis for plant species diversity and dominance in arctic tundra. Nature 415(6867):68–71

    Article  PubMed  CAS  Google Scholar 

  • Montesinos D (2015) Plant–plant interactions: from competition to facilitation. Web Ecol 15(1):1–2

    Article  Google Scholar 

  • Morgan MA, Jackson WA (1988) Suppression of ammonium uptake by nitrogen supply and its relief during nitrogen limitation. Physiol Plant 73(1):38–45

    Article  CAS  Google Scholar 

  • Näsholm T, Kielland K, Ganeteg U (2009) Uptake of organic nitrogen by plants. New Phytol 182(1):31–48

    Article  PubMed  CAS  Google Scholar 

  • Padilla FM, Pugnaire FI (2006) The role of nurse plants in the restoration of degraded environments. Front Ecol Environ 4(4):196–202

    Article  Google Scholar 

  • Rajaniemi TK (2003) Evidence for size asymmetry of belowground competition. Basic Appl Ecol 4(3):239–247

    Article  Google Scholar 

  • Rewald B, Leuschner C (2009) Belowground competition in a broad-leaved temperate mixed forest: pattern analysis and experiments in a four-species stand. Eur J For Res 128(4):387–398

    Article  Google Scholar 

  • Ricklefs RE, Miller GL (1999) Ecology, 4th edn. W.H. Freeman, New York

    Google Scholar 

  • Schenk HJ (2006) Root competition: beyond resource depletion. J Ecol 94(4):725–739

    Article  Google Scholar 

  • Schwinning S, Weiner J (1998) Mechanisms determining the degree of size asymmetry in competition among plants. Oecologia 113(4):447–455

    Article  PubMed  Google Scholar 

  • Semere T, Froud-Williams RJ (2001) The effect of pea cultivar and water stress on root and shoot competition between vegetative plants of maize and pea. J Appl Ecol 38(1):137–145

    Article  Google Scholar 

  • Silvertown J (2004) Plant coexistence and the niche. Trends Ecol Evol 19(11):605–611

    Article  Google Scholar 

  • Song MH, Xu XL, Hu QW, Tian YQ, Ouyang H, Zhou CP (2007) Interactions of plant species mediated plant competition for inorganic nitrogen with soil microorganisms in an alpine meadow. Plant Soil 297(1–2):127–137

    Article  CAS  Google Scholar 

  • van Kessel C, Hartley C (2000) Agricultural management of grain legumes: has it led to an increase in nitrogen fixation? Field Crop Res 65(2–3):165–181

    Article  Google Scholar 

  • Wang SP, Wang YF, Schnug E, Haneklaus S, Fleckenstein J (2002) Effects of nitrogen and Sulphur fertilization on oats yield, quality and digestibility and nitrogen and Sulphur metabolism of sheep in the Inner Mongolia Steppes of China. Nutr Cycl Agroecosyst 62(2):195–202

    Article  Google Scholar 

  • Warren CR (2014) Organic n molecules in the soil solution: what is known, what is unknown and the path forwards. Plant Soil 375(1–2):1–19

    Article  CAS  Google Scholar 

  • Wei JZ, Chatterton NJ (2001) Fructan biosynthesis and fructosyltransferase evolution: expression of the 6-SFT (sucrose: fructan 6-fructosyltransferase) gene in crested wheatgrass (Agropyron cristatum). J Plant Physiol 158(9):1203–1213

    Article  CAS  Google Scholar 

  • Weiner J (1985) Size hierarchies in experimental populations of annual plants. Ecology 66(3):743–752

    Article  Google Scholar 

  • Xi N, Zhu BR, Zhang DY (2017) Contrasting grass nitrogen strategies reflect interspecific trade-offs between nitrogen acquisition and use in a semi-arid temperate grassland. Plant Soil 418(1–2):267–276

    Article  CAS  Google Scholar 

  • Xu XL, Ouyang H, Cao GM, Richter A, Wanek W, Kuzyakov Y (2011) Dominant plant species shift their nitrogen uptake patterns in response to nutrient enrichment caused by a fungal fairy in an alpine meadow. Plant Soil 341(1–2):495–504

    Article  CAS  Google Scholar 

Download references

Acknowledgements

This study was supported by the National Natural Science Foundation of China (41601318, 31470560, and 41877089), and the general financial grant from the China Postdoctoral Science Foundation (2016 M600123). We thank Prof. Xingliang Xu for his suggestions to improve this manuscript. We also thank the Huailai Research Station for their support. We thank Editage [www.editage.cn] for English language editing.

Author information

Authors and Affiliations

Authors

Corresponding authors

Correspondence to Na Qiao or Yuqiang Tian.

Additional information

Responsible Editor: Andrea Schnepf .

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(DOCX 28 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Liu, M., Li, H., Song, J. et al. Interactions between intercropped Avena sativa and Agropyron cristatum for nitrogen uptake. Plant Soil 447, 611–621 (2020). https://doi.org/10.1007/s11104-019-04389-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11104-019-04389-z

Keywords

Navigation