Skip to main content

Advertisement

Log in

Efficient design of QCA based hybrid multiplier using clock zone based crossover

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

Quantum-dot cellular automata (QCA) is an emerging trend in nanotechnology and appropriate for the development of high performance and low power integrated circuit design. Dadda and Wallace tree multipliers are designed by employing CZBCO technique to overcome the crossover issues of geometric design complexity and alignment accuracy and also to achieve high device density. The proposed design of QCA-based Hybrid parallel multiplier consists of decomposing structure that adopts Dadda and Wallace algorithms to optimize the design. In this proposal, N-bit multiplier array is decomposed into four N/2-bit multiplier arrays that are easily constructed by employing both Wallace and Dadda multipliers. The Hybrid multiplier comprising dadda and Wallace tree multiplier uses less number of majority gates and inverters and hence minimizes area, cell count and delay. It has been observed that the QCA cost function of the proposed multiplier better than existing multiplier referred in the literature in terms of energy and speed. Furthermore, the proposed multiplier significantly achieves high device density, lessened clock delay, area and cell count and also to eliminate fabrication difficulty of crossover.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9

Similar content being viewed by others

References

  1. International technology road map for semiconductors 2009. http://public.itrs.net.

  2. Tougaw, P. D., & Lent, C. (1994). Logical devices implemented using quantum cellular automata. Journal of Applied Physics,75(3), 1818–1825.

    Article  Google Scholar 

  3. Orlov, A. O., Amlani, I., Bernstein, G. H., Lent, C. S., & Srider, G. L. (1997). Realization of functional cell for quantum-dot cellular automata. Science,277, 928–930.

    Article  Google Scholar 

  4. Huang, J., Momenzadeh, M., & Lombardi, F. (2007). An overview of nanoscale devices and circuits. IEEE Design and Test of Computers,24(4), 304–311.

    Article  Google Scholar 

  5. Bernstein, G., Imre, A., Metlushko, V., Orlov, A., Zhou, L., Ji, L., et al. (2005). Magnetic QCA systems. Journal of Microelectronics,36, 619–624.

    Article  Google Scholar 

  6. Kong, K., Shang, Y., & Lu, R. (2010). An optimized majority logic synthesis methodology for quantum-dot cellular automata. IEEE Transactions on Nanotechnology,9(2), 170–183.

    Article  Google Scholar 

  7. Walus, K., Dysart, T. J., & Jullien, G. A. (2004). QCADesigner: A rapid design and simulation tool for quantum-dot cellular automata. IEEE Transaction on Nanotechnology,3, 26–31.

    Article  Google Scholar 

  8. Pudi, V., & Sridharan, K. (2012). Low complexity design of Ripple Carry and Brent-Kung Adders in QCA. IEEE Transactions on Nanotechnology,11(1), 105–119.

    Article  Google Scholar 

  9. Pudi, V., & Sridharan, K. (2011). Efficient design of a hybrid adder in quantum-dot cellular automata. IEEE Transactions on Very Large Scale Integration (VLSI) Systems,19(9), 1535–1548.

    Article  Google Scholar 

  10. Cocorullo, G., Corsonello, P., Frustaci, F., & Perri, S. (2017). Design of efficient BCD adders in quantum-dot cellular automata. IEEE Transactions on Circuits And Systems—II: Express Briefs,64(5), 575–579.

    Article  Google Scholar 

  11. Taherkhani, E., Moaiyeri, M. H., & Angizi, S. (2017). Design of an ultra-efficient reversible full adder-subtractor in quantum-dot cellular automata. Optik—International Journal for Light and Electron Optics,142, 557–563.

    Article  Google Scholar 

  12. Bagherian Khosroshahy, M., Moaiyeri, M. H., Angizi, S., Bagherzadeh, N., & Navi, K. (2017). Quantum-dot cellular automata circuits with reduced external fixed inputs. Microprocessors and Microsystems,50, 154–163.

    Article  Google Scholar 

  13. Ahmad, Firdous. (2018). An optimal design of QCA based 2n:1/1:2n multiplexer/demultiplexer and its efficient digital logic realization. Microprocessors and Microsystems,56, 64–75.

    Article  Google Scholar 

  14. Debnath, Bikash, Das, Jadav Chandra, & De, Debashis. (2017). Reversible logic-based image steganography using quantum dot cellular automata for secure nanocommunication. IET Circuits, Devices and Systems,11(1), 58–67.

    Article  Google Scholar 

  15. Chabi, Amir Mokhtar, Roohi, Arman, Khademolhosseini, Hossein, Sheikhfaal, Shadi, & DeMara, Ronald F. (2017). Towards ultra-efficient QCA reversible circuits. Microprocessors and Microsystems,49, 127–138.

    Article  Google Scholar 

  16. Chougule, P. P., Sen, B., & Dongale, T. D. (2017). Realization of processing in-memory computing architecture using quantum dot cellular automata. Microprocessors and Microsystems,52, 49–58.

    Article  Google Scholar 

  17. Singh, G., Sarin, R. K., & Raj, B. (2017). Design and analysis of area efficient QCA based reversible logic gates. Microprocessors and Microsystems,52, 59–68.

    Article  Google Scholar 

  18. Deng, Fengbin, Xie, Guangjun, Zhang, Yongqiang, Peng, Fei, & Hongjun, L. V. (2017). A novel design and analysis of comparator with XNOR gate for QCA. Microprocessors and Microsystems,55, 131–135.

    Article  Google Scholar 

  19. Kalogeiton, V. S., Papadopoulos, D. P., Liolis, O., Mardiris, V. A., Sirakoulis, G. C., & Karafyllidis, I. G. (2017). Programmable crossbar quantum-dot cellular automata circuits. IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems,36(8), 1367–1380.

    Article  Google Scholar 

  20. Kim, S., & Swartzlander, E. (2009). Parallel multipliers for quantum-dot cellular automata. In: Proceedings of IEEE nanotechnology materials and devices conference (pp. 68–72).

  21. Sayedsalehi, S., Rahimi Azghadi, M., Angizi, S., et al. (2015). Restoring and non-restoring array divider designs in quantum-dot cellular automata. Information Sciences,311, 86–101.

    Article  MathSciNet  Google Scholar 

  22. Mohammadi, Mohammad, Gorgin, Saeid, & Mohammadi, Majid. (2017). Design of non-restoring divider in quantum dot cellular automata technology. IET Circuits Devices System,11(2), 135–141.

    Article  Google Scholar 

  23. Pandiammal, K., & Meganathan, D. (2017). QCA-based FIR serial parallel multipliers using cut-set algorithm. In Proceedings of the 17th IEEE international conference on nanotechnology Pittsburgh, USA (pp. 983–988).

  24. Sill Torres, F., Wille, R., Niemann, P., & Drechsler, R. (2018). An energy-aware model for the logic synthesis of quantum-dot cellular automata. IEEE Transactions on CAD of Integrated Circuits and Systems,37(12), 3031–3041.

    Article  Google Scholar 

  25. Liu, W., Lu, L., O’Neill, M., & Swartzlander, E. E. (2014). A first step toward cost functions for quantum-dot cellular automata designs. IEEE Transactions on Nanotechnology,13(3), 476–487.

    Article  Google Scholar 

  26. Lent, C., Liu, M., & Lu, Y. (2006). Bennett clocking of quantum-dot cellular automata and the limits to binary logic scaling. Nanotechnology,17, 4240–4252.

    Article  Google Scholar 

  27. Srivastava, S., Asthana, A., Bhanja, S., & Sarkar, S. (2011). QCAPro an error-power estimation tool for QCA circuit design. In IEEE international symposium of circuits and systems (ISCAS) (pp. 2377–2380).

  28. Brent, R., & Kung, H. (1981). The area-time complexity of binary multiplication. Journal of the ACM,28, 521–534.

    Article  MathSciNet  Google Scholar 

  29. Liu, W., Lu, L., O’Neill, M., & Swartzlander, E. (2011). Design rules forquantum-dot cellular automata. In IEEE international symposium on circuits and systems (ISCAS) (pp. 2361–2364).

  30. Sengupta, D., & Saleh, R. (2007). Generalized power-delay metrics in deep submicron CMOS designs. IEEE Transactions Comput-Aided Design of Integrated Circuits and Systems,26(1), 183–189.

    Article  Google Scholar 

  31. Devadoss, R., Paul, K., & Balakrishnan, M. (2009). Coplanar QCA crossovers. Electronics Letters,45(24), 1234–1235.

    Article  Google Scholar 

  32. Abedi, D., Jaberipur, G., & Sangsefidi, M. (2015). Coplanar full adder in quantum-dot cellular automata via clock-zone based crossover. IEEE Transactions on Nanotechnology,14(3), 497–504.

    Article  Google Scholar 

  33. Liu, W., Lu, L., O’Neill, M., Swartzlander, E. E., Jr., & Woods, R. (2011). Design of quantum-dot cellular automata circuits using cut-set retiming. IEEE Transaction on Nanotechnology,10(5), 1150–1160.

    Article  Google Scholar 

  34. Pudi, V., & Sridharan, K. (2013). Efficient design of Baugh-Wooley multiplier in quantum-dot cellular automata. In Proceedings of the 13th IEEE international conference on nanotechnology Beijing, China

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Pandiammal.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Pandiammal, K., Meganathan, D. Efficient design of QCA based hybrid multiplier using clock zone based crossover. Analog Integr Circ Sig Process 102, 63–77 (2020). https://doi.org/10.1007/s10470-019-01570-3

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-019-01570-3

Keywords

Navigation