Skip to main content
Log in

Design, FPGA implementation and statistical analysis of chaos-ring based dual entropy core true random number generator

  • Published:
Analog Integrated Circuits and Signal Processing Aims and scope Submit manuscript

Abstract

In this paper, a novel chaos-ring based dual entropy core TRNG architecture on FPGA with high operating frequency and high throughput has been performed and presented. The design of dual entropy core TRNG has been generated by uniting the chaotic system-based RNG and the RO-based RNG structures on FPGA. The chaotic oscillator structure as the basic entropy source has been implemented in VHDL using Euler numerical algorithm in 32-bit IQ-Math fixed point number standart on FPGA. The designed chaotic oscillator has been synthesized for the FPGA chip and the statistics related to chip resource consumption and clock frequencies of the units have been presented. The RO-based RNG structure has been designed as the second entropy source. Chaos-ring based dual entropy core novel TRNG unit have been created by combining of these two FPGA-based structures in the XOR function used at the post processing unit. The throughput of the designed dual entropy core TRNG unit ranges 464 Mbps. The output bit streams obtained from FPGA-based novel TRNG have been subjected to NIST 800-22 test suites.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8

Similar content being viewed by others

References

  1. Valtierra, J. L., Tlelo-Cuautle, E., & Rodríguez-Vázquez, Á. (2017). A switched-capacitor skew-tent map implementation for random number generation. International Journal of Circuit Theory and Applications,45(2), 305–315. https://doi.org/10.1002/cta.2305.

    Article  Google Scholar 

  2. Palacios-Luengas, L., Pichardo-Méndez, J. L., Díaz-Méndez, J. A., Rodríguez-Santos, F., & Vázquez-Medina, R. (2019). PRNG based on skew tent map. Arabian Journal for Science and Engineering,44, 3817–3830. https://doi.org/10.1007/s13369-018-3688-y.

    Article  Google Scholar 

  3. Jakimoski, G., & Kocarev, L. (2001). Chaos and cryptography: Block encryption ciphers based on chaotic maps. IEEE Transactions on Circuits and Systems I: Fundamental Theory and Applications,48(2), 163–169. https://doi.org/10.1109/81.904880.

    Article  MathSciNet  MATH  Google Scholar 

  4. Akkaya, S., Pehlivan, İ., Akgül, A., & Varan, M. (2018). The design and application of bank authenticator device with a novel chaos based random number generator. Journal of the Faculty of Engineering and Architecture of Gazi University,33(3), 1171–1182. https://doi.org/10.17341/gazimmfd.416418.

    Article  Google Scholar 

  5. Akhshani, A., Akhavan, A., Mobaraki, A., Lim, S.-C., & Hassan, Z. (2014). Pseudo random number generator based on quantum chaotic map. Communications in Nonlinear Science and Numerical Simulation,19(1), 101–111. https://doi.org/10.1016/J.CNSNS.2013.06.017.

    Article  MATH  Google Scholar 

  6. Özkaynak, F. (2014). Cryptographically secure random number generator with chaotic additional input. Nonlinear Dynamics,78(3), 2015–2020. https://doi.org/10.1007/s11071-014-1591-y.

    Article  MathSciNet  Google Scholar 

  7. Banerjee, S., & Kurths, J. (2014). Chaos and cryptography: A new dimension in secure communications. The European Physical Journal Special Topics,223(8), 1441–1445. https://doi.org/10.1140/epjst/e2014-02208-9.

    Article  Google Scholar 

  8. Lee, J., Bi, Y., Peterson, G. D., Hinde, R. J., & Harrison, R. J. (2009). HASPRNG: Hardware accelerated scalable parallel random number generators. Computer Physics Communications,180(12), 2574–2581. https://doi.org/10.1016/J.CPC.2009.07.002.

    Article  MathSciNet  MATH  Google Scholar 

  9. Mazrooei-Sebdani, R., & Dehghan, M. (2008). A non-trivial relation between some many-dimensional chaotic discrete dynamical systems and some one-dimensional chaotic discrete dynamical systems. Computer Physics Communications,179(9), 628–633. https://doi.org/10.1016/J.CPC.2008.05.010.

    Article  MathSciNet  MATH  Google Scholar 

  10. Karakaya, B., Çelik, V., & Gülten, A. (2017). Chaotic cellular neural network-based true random number generator. International Journal of Circuit Theory and Applications,45(11), 1885–1897. https://doi.org/10.1002/cta.2374.

    Article  Google Scholar 

  11. Avaroğlu, E., Tuncer, T., Özer, A. B., Ergen, B., & Türk, M. (2015). A novel chaos-based post-processing for TRNG. Nonlinear Dynamics,81(1–2), 189–199. https://doi.org/10.1007/s11071-015-1981-9.

    Article  MathSciNet  Google Scholar 

  12. Avaroğlu, E., Koyuncu, İ., Özer, A. B., & Türk, M. (2015). Hybrid pseudo-random number generator for cryptographic systems. Nonlinear Dynamics,82(1–2), 239–248. https://doi.org/10.1007/s11071-015-2152-8.

    Article  MathSciNet  Google Scholar 

  13. Tuna, M., Karthikeyan, A., Rajagopal, K., Alçın, M., & Koyuncu, İ. (2019). Hyperjerk multiscroll oscillators with megastability: Analysis, FPGA implementation and a novel ANN-ring-based true random number generator. AEU - International Journal of Electronics and Communications. https://doi.org/10.1016/j.aeue.2019.152941.

    Article  Google Scholar 

  14. Tuna, M., & Fidan, C. B. (2016). Electronic circuit design, implementation and FPGA-based realization of a new 3D chaotic system with single equilibrium point. Optik - International Journal for Light and Electron Optics,127(24), 11786–11799. https://doi.org/10.1016/j.ijleo.2016.09.087.

    Article  Google Scholar 

  15. Pourmahmood, M., Hasan, A., Aghababa, P., Aghababa, M. P., & Aghababa, H. P. (2013). A novel finite-time sliding mode controller for synchronization of chaotic systems with input nonlinearity. Arabian Journal for Science and Engineering,38, 3221–3232. https://doi.org/10.1007/s13369-012-0459-z.

    Article  MathSciNet  MATH  Google Scholar 

  16. Sundarapandian, V., & Pehlivan, I. (2012). Analysis, control, synchronization, and circuit design of a novel chaotic system. Mathematical and Computer Modelling,55(7–8), 1904–1915. https://doi.org/10.1016/j.mcm.2011.11.048.

    Article  MathSciNet  MATH  Google Scholar 

  17. Tuna, M., & Fidan, C. B. (2018). A Study on the importance of chaotic oscillators based on FPGA for true random number generating (TRNG) and chaotic systems. Journal of the Faculty of Engineering and Architecture of Gazi University,33(2), 469–486. https://doi.org/10.17341/GUMMFD.71479.

    Article  Google Scholar 

  18. Khanzadi, H., Eshghi, M., Khanzadi, H., & Borujeni, S. E. (2014). Image encryption using random bit sequence based on chaotic maps. Arabian Journal for Science and Engineering,39, 1039–1047. https://doi.org/10.1007/s13369-013-0713-z.

    Article  MATH  Google Scholar 

  19. Kaur, M., & Kumar, V. (2018). Adaptive differential evolution-based lorenz chaotic system for image encryption. Arabian Journal for Science and Engineering,43, 8127–8144. https://doi.org/10.1007/s13369-018-3355-3.

    Article  Google Scholar 

  20. Çiçek, S., Ferikoğlu, A., & Pehlivan, İ. (2016). A new 3D chaotic system: Dynamical analysis, electronic circuit design, active control synchronization and chaotic masking communication application. Optik - International Journal for Light and Electron Optics,127(8), 4024–4030. https://doi.org/10.1016/j.ijleo.2016.01.069.

    Article  Google Scholar 

  21. Çavuşoğlu, Ü., Akgül, A., Kaçar, S., Pehlivan, I., & Zengin, A. (2016). A novel chaos-based encryption algorithm over TCP data packet for secure communication. Security and Communication Networks,9(11), 1285–1296. https://doi.org/10.1002/sec.1414.

    Article  Google Scholar 

  22. Effati, S., Saberi Nik, H., & Jajarmi, A. (2013). Hyperchaos control of the hyperchaotic Chen system by optimal control design. Nonlinear Dynamics,73(1–2), 499–508. https://doi.org/10.1007/s11071-013-0804-0.

    Article  MathSciNet  MATH  Google Scholar 

  23. Yang, C.-C., & Yang, C.-C. (2014). Adaptive single input control for synchronization of a 4D Lorenz-Stenflo chaotic system. Arabian Journal for Science and Engineering,39, 2413–2426. https://doi.org/10.1007/s13369-013-0768-x.

    Article  MathSciNet  MATH  Google Scholar 

  24. Rajagopal, K., Tuna, M., Karthikeyan, A., Koyuncu, İ., Duraisamy, P., & Akgul, A. (2019). Dynamical analysis, sliding mode synchronization of a fractional-order memristor Hopfield neural network with parameter uncertainties and its non-fractional-order FPGA implementation. The European Physical Journal Special Topics,228(10), 2065–2080. https://doi.org/10.1140/epjst/e2019-900005-8.

    Article  Google Scholar 

  25. Çiçek, S., Uyaroğlu, Y., & Pehlivan, İ. (2013). Simulation and circuit implementation of Sprott Case H chaotic system and its synchronization application for secure communication systems. Journal of Circuits, Systems and Computers,22(04), 1350022. https://doi.org/10.1142/S0218126613500229.

    Article  Google Scholar 

  26. Rajagopal, K., Akgul, A., Jafari, S., & Aricioglu, B. (2018). A chaotic memcapacitor oscillator with two unstable equilibriums and its fractional form with engineering applications. Nonlinear Dynamics,91(2), 957–974. https://doi.org/10.1007/s11071-017-3921-3.

    Article  Google Scholar 

  27. Akgul, A., Calgan, H., Koyuncu, I., Pehlivan, I., & Istanbullu, A. (2015). Chaos-based engineering applications with a 3D chaotic system without equilibrium points. Nonlinear Dynamics,84(2), 481–495. https://doi.org/10.1007/s11071-015-2501-7.

    Article  MathSciNet  Google Scholar 

  28. Rajagopal, K., Akgul, A., Jafari, S., Karthikeyan, A., & Koyuncu, I. (2017). Chaotic chameleon: Dynamic analyses, circuit implementation, FPGA design and fractional-order form with basic analyses. Chaos, Solitons & Fractals,103, 476–487. https://doi.org/10.1016/J.CHAOS.2017.07.007.

    Article  MathSciNet  Google Scholar 

  29. Koyuncu, İ., Şahin, İ., Gloster, C., & Sarıtekin, N. K. (2017). A neuron library for rapid realization of artificial neural networks on FPGA: A case study of Rössler chaotic system. Journal of Circuits, Systems and Computers,26(01), 1750015. https://doi.org/10.1142/S0218126617500153.

    Article  Google Scholar 

  30. Tuna, M., Alçın, M., Koyuncu, İ., Fidan, C. B., & Pehlivan, İ. (2019). High speed FPGA-based chaotic oscillator design. Microprocessors and Microsystems,66, 72–80. https://doi.org/10.1016/J.MICPRO.2019.02.012.

    Article  Google Scholar 

  31. Kaya, T. (2019). A true random number generator based on a Chua and RO-PUF: Design, implementation and statistical analysis. Analog Integrated Circuits and Signal Processing. https://doi.org/10.1007/s10470-019-01474-2.

    Article  Google Scholar 

  32. Cicek, I., Pusane, A. E., & Dundar, G. (2014). A novel design method for discrete time chaos based true random number generators. Integration, the VLSI Journal,47(1), 38–47. https://doi.org/10.1016/j.vlsi.2013.06.003.

    Article  Google Scholar 

  33. Koyuncu, İ., & Turan Özcerit, A. (2017). The design and realization of a new high speed FPGA-based chaotic true random number generator. Computers & Electrical Engineering,58, 203–214. https://doi.org/10.1016/J.COMPELECENG.2016.07.005.

    Article  Google Scholar 

  34. Tavas, V., Demirkol, A. S., Ozoguz, S., Kılınç, S., Toker, A., & Zeki, A. (2010). An IC random number generator based on Chaos. In International conference on applied electronics (AE) (pp. 1–4). Pilsen.

  35. Ergün, S., & Özoguz, S. (2007). Truly random number generators based on a non-autonomous chaotic oscillator. AEU - International Journal of Electronics and Communications,61(4), 235–242. https://doi.org/10.1016/j.aeue.2006.05.006.

    Article  Google Scholar 

  36. Sunar, B., Martin, W., & Stinson, D. (2007). A provably secure true random number generator with built-in tolerance to active attacks. IEEE Transactions on Computers,56(1), 109–119. https://doi.org/10.1109/TC.2007.250627.

    Article  MathSciNet  MATH  Google Scholar 

  37. Schellekens, D., Preneel, B., & Verbauwhede, I. (2006). FPGA vendor agnostic true random number generator. In 2006 International conference on field programmable logic and applications (pp. 1–6). Madrid. https://doi.org/10.1109/fpl.2006.311206.

  38. Ning, L., Ding, J., Chuang, B., & Xuecheng, Z. (2015). Design and validation of high speed true random number generators based on prime-length ring oscillators. The Journal of China Universities of Posts and Telecommunications,22(4), 1–6. https://doi.org/10.1016/S1005-8885(15)60661-6.

    Article  Google Scholar 

  39. Park, M., Rodgers, J. C., & Lathrop, D. P. (2015). True random number generation using CMOS Boolean chaotic oscillator. Microelectronics Journal,46(12), 1364–1370. https://doi.org/10.1016/j.mejo.2015.09.015.

    Article  Google Scholar 

  40. Cicek, I., Pusane, A. E., & Dundar, G. (2014). A new dual entropy core true random number generator. Analog Integrated Circuits and Signal Processing,81(1), 61–70. https://doi.org/10.1007/s10470-014-0324-y.

    Article  Google Scholar 

  41. Wieczorek, P. Z., & Golofit, K. (2014). Dual-metastability time-competitive true random number generator. IEEE Transactions on Circuits and Systems I: Regular Papers,61(1), 134–145. https://doi.org/10.1109/TCSI.2013.2265952.

    Article  Google Scholar 

  42. Wold, K., & Tan, C. H. (2009). Analysis and enhancement of random number generator in FPGA based on oscillator rings. International Journal of Reconfigurable Computing,2009, 1–8. https://doi.org/10.1155/2009/501672.

    Article  Google Scholar 

  43. Tuncer, T., Avaroglu, E., Türk, M., & Ozer, A. B. (2015). Implementation of non-periodic sampling true random number generator on FPGA. Informacije MIDEM,44(4), 296–302.

    Google Scholar 

  44. Wang, Y., & Li, S. (2016). A high-speed digital true random number generator based on cross ring oscillator. IEICE Transactions on Fundamentals of Electronics, Communications and Computer Sciences,E99.A(4), 806–818. https://doi.org/10.1587/transfun.e99.a.806.

    Article  Google Scholar 

  45. Fatemi-Behbahani, E., Ansari-Asl, K., & Farshidi, E. (2016). A new approach to analysis and design of chaos-based random number generators using algorithmic converter. Circuits, Systems, and Signal Processing,35(11), 3830–3846. https://doi.org/10.1007/s00034-016-0248-0.

    Article  Google Scholar 

  46. Pehlivan, İ., & Uyaroğlu, Y. (2012). A new 3D chaotic system with golden proportion equilibria: Analysis and electronic circuit realization. Computers & Electrical Engineering,38(6), 1777–1784. https://doi.org/10.1016/j.compeleceng.2012.08.007.

    Article  Google Scholar 

  47. Vipin Chandra, S. (2014). A Survey on CORDIC Algorithm Implementations Using Different Number Format. International Journal of Innovative Research in Science, Engineering and Technology,3(6), 13452–13458.

    Google Scholar 

  48. Strogatz, S. (2001). Nonlinear dynamics and chaos: With applications to physics, biology, chemistry, and engineering (studies in nonlinearity). Cambridge: Westview Press.

    Google Scholar 

  49. Ott, E. (2002). Chaos in dynamical systems. Cambridge: Cambridge University Press.

    Book  Google Scholar 

  50. Koyuncu, I., Ozcerit, A. T., & Pehlivan, I. (2014). Implementation of FPGA-based real time novel chaotic oscillator. Nonlinear Dynamics,77(1–2), 49–59. https://doi.org/10.1007/s11071-014-1272-x.

    Article  MathSciNet  Google Scholar 

  51. Alligood, K. T., Sauer, T., & Yorke, J. A. (1996). Chaos: An introduction to dynamical systems. New York: Springer.

    Book  Google Scholar 

  52. Garipcan, A. M., & Erdem, E. (2019). Implementation and performance analysis of true random number generator on FPGA environment by using non-periodic chaotic signals obtained from chaotic maps. Arabian Journal for Science and Engineering,44(11), 9427–9441. https://doi.org/10.1007/s13369-019-04027-x.

    Article  Google Scholar 

  53. Çiçek, I., & Dündar, G. (2011). A hardware efficient chaotic ring oscillator based true random number generator. In 2011 18th IEEE international conference on electronics, circuits, and systems, ICECS 2011 (pp. 430–433). https://doi.org/10.1109/icecs.2011.6122305.

  54. Jiteurtragool, N., & Masayoshi, T. (2017). Hybrid random number generator based on chaotic oscillator. In 2016 Management and innovation technology international conference, MITiCON 2016 (pp. MIT133–MIT136). Institute of Electrical and Electronics Engineers Inc. https://doi.org/10.1109/miticon.2016.8025231.

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Murat Alçın.

Ethics declarations

Conflict of interest

The authors declare that there are no conflicts of interest regarding the publication of this paper.

Additional information

Publisher's Note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Koyuncu, İ., Tuna, M., Pehlivan, İ. et al. Design, FPGA implementation and statistical analysis of chaos-ring based dual entropy core true random number generator. Analog Integr Circ Sig Process 102, 445–456 (2020). https://doi.org/10.1007/s10470-019-01568-x

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10470-019-01568-x

Keywords

Navigation