Skip to main content
Log in

Satellite-Observed Chlorophyll-a Concentration Variability and Its Relation to Physical Environmental Changes in the East Sea (Japan Sea) from 2003 to 2015

  • Special Issue: Climate Change and Anthropogenic Change around Korean Peninsula
  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

The spatio-temporal variability of the chlorophyll-a (chl-a) concentration in the East Sea (Japan Sea) (EJS) was investigated using Moderate Resolution Imaging Spectroradiometer (MODIS) data over 13 years from 2003 to 2015 to understand the impact of physical environmental changes on low-trophic level marine ecosystems. The chl-a images were composited to produce gridded monthly chl-a images using a weighted average method after applying a speckle removal algorithm to each path image. Missing pixels without any satellite observations because of cloud coverage were objectively filled using three-dimensional optimal interpolation. The first empirical orthogonal function (EOF) mode of the monthly chl-a images, accounting for 14% of the total variance, showed higher eigenvectors values in the eastern part of the EJS and distinct annual peaks each spring. The amplitudes of the first EOF mode, despite the dominant year-to-year variations in chl-a, tended to increase during spring over time. The recent 13-year trend of chl-a showed differences between the southwestern part and the northeastern part of the EJS, and this difference clearly appeared in the monthly trend maps for March and April. The eastern coast of Korea showed a highly positive trend during summer, particularly during August. The changes in chl-a over the decade were related to the physical environmental changes in sea surface wind, mixed layer depth, and stratification of upper sea water in the EJS.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14

Similar content being viewed by others

References

  • Agustí, S., and C.M. Duarte. 1999. Phytoplankton chlorophyll a distribution and water column stability in the central Atlantic Ocean. Oceanologica Acta 22 (2): 193–203.

    Article  Google Scholar 

  • Behrenfeld, M.J. 2010. Abandoning Sverdrup’s critical depth hypothesis on phytoplankton blooms. Ecology 91 (4): 977–989.

    Article  Google Scholar 

  • Belkin, I.M. 2009. Rapid warming of large marine ecosystems. Progress in Oceanography 81 (1–4): 207–213.

    Article  Google Scholar 

  • Bouman, H.A., O. Ulloa, R. Barlow, W.K. Li, T. Platt, K. Zwirglmaier, D.J. Scanlan, and S. Sathyendranath. 2011. Water-column stratification governs the community structure of subtropical marine picophytoplankton. Environmental Microbiology Reports 3 (4): 473–482.

    Article  Google Scholar 

  • Brink, K.H., and S.P. Murray. 2006. Special issue intro: east of Korea and west of Japan—the very model of modern major oceanography. Oceanography 19 (3): 14–16.

    Article  Google Scholar 

  • Byun, S.-K., and Y.H. Seung. 1984. Description of current structure and coastal upwelling in the southwest Japan Sea—summer 1981 and spring 1982. In Ocean hydrodynamics of the Japan and East China Seas, ed. T. Ichiye, 83–93. Amsterdam: Elsevier Oceanography Series 39.

  • Campbell, J.W., J.M. Blaisdell, and M. Darzi. 1995. Level-3 SeaWiFS data products: spatial and temporal binning algorithms. Hooker, S. B., E. R. Firestone, and J. G. Acker (eds.), NASA Technical Memorandum 104566, vol. 32, NASA Goddard Space Flight Center, Greenbelt, MD.

  • Capotondi, A., M.A. Alexander, N.A. Bond, E.N. Curchitser, and J.D. Scott. 2012. Enhanced upper ocean stratification with climate change in the CMIP3 models. Journal of Geophysical Research: Oceans 117 (C4).

  • Chae, H.-J., and K.-A. Park. 2009. Characteristics of speckle errors of SeaWiFS chlorophyll-a concentration in the East Sea. The Korean Earth Science Society 30: 234–246.

    Article  Google Scholar 

  • Chiba, S., M.N. Aita, K. Tadokoro, T. Saino, H. Sugisaki, and K. Nakata. 2008. From climate regime shifts to lower-trophic level phenology: synthesis of recent progress in retrospective studies of the western North Pacific. Progress in Oceanography 77 (2–3): 112–126.

    Article  Google Scholar 

  • Chiswell, S.M. 2011. Annual cycles and spring blooms in phytoplankton: don’t abandon Sverdrup completely. Marine Ecology Progress Series 443: 39–50.

    Article  Google Scholar 

  • de Boyer Montégut, C., G. Madec, A.S. Fischer, A. Lazar, and D. Iudicone. 2004. Mixed layer depth over the global ocean: an examination of profile data and a profile-based climatology. Journal of Geophysical Research: Oceans 109 (C12).

  • Fofonoff, P., and R.C. Millard. 1983. Algorithms for computation of fundamental properties of seawater. UNESCO Technical Papers in Marine Sciences 44: 53.

  • Freeman, E., S.D. Woodruff, S.J. Worley, S.J. Lubker, E.C. Kent, W.E. Angel, D.I. Berry, P. Brohan, R. Eastman, L. Gates, W. Gloeden, Z. Ji, J. Lawrimore, N.A. Rayner, G. Rosenhagen, and S.R. Smith. 2017. ICOADS Release 3.0: a major update to the historical marine climate record. International Journal of Climatology 37 (5): 2211–2232.

    Article  Google Scholar 

  • Gamo, T. 1999. Global warming may have slowed down the deep conveyor belt of a marginal sea of the northwestern Pacific: Japan Sea. Geophysical Research Letters 26 (20): 3137–3140.

    Article  Google Scholar 

  • Hong, G.-H., D.-K. Lee, D.-B. Yang, Y.I. Kim, J.-H. Park, and C.-H. Park. 2013. Eddy- and wind-sustained moderate primary productivity in the temperate East Sea (Sea of Japan). Biogeosciences 10: 10429–10458.

    Article  Google Scholar 

  • Ichiye, T. 1984. Some problems of circulation and hydrography of the Japan Sea and the Tsushima Current. p. 15–54. In Ocean hydrodynamics of the Japan and East China Seas, ed. T. Ichiye. Amsterdam: Elsevier Oceanography Series 39.

  • IOCCG. 2008. Why ocean colour? The societal benefits of ocean-colour technology. Platt, T., N. Hoepffner, V. Stuart, and C. Brown (eds.), Reports of the International Ocean-Colour Coordinating Group, No. 7, IOCCG, Dartmouth, Canada.

  • Ishizaka, J., I. Asanuma, N. Ebuchi, H. Fukushima, H. Kawamura, K. Kawasaki, M. Kishino, M. Kubota, H. Masuko, S. Matsumura, S. Saitoh, Y. Senga, M. Shimanuki, N. Tomiim, and M. Utashima. 1997. Time series of physical and optical parameters off Shimane, Japan, during fall of 1993: first observation by moored optical buoy system for ADEOS data verification. Journal of Oceanography 53: 245–258.

    Google Scholar 

  • Itoh, S., I. Yasuda, H. Saito, A. Tsuda, and K. Komatsu. 2015. Mixed layer depth and chlorophyll a: Profiling float observations in the Kuroshio–Oyashio extension region. Journal of Marine Systems 151: 1–14.

    Article  Google Scholar 

  • Jo, C.O., S. Park, Y.H. Kim, K.-A. Park, J.J. Park, M.K. Park, S. Li, J.Y. Kim, J.-E. Park, J.Y. Kim, and K.R. Kim. 2014. Spatial distribution of seasonality of SeaWiFS chlorophyll-a concentrations in the East/Japan Sea. Journal of Marine Systems 139: 288–298.

    Article  Google Scholar 

  • Joo, H.T., J.W. Park, S.H. Son, J.-H. Noh, J.-Y. Jeong, J.H. Kwak, S. Saux-Picart, J.H. Choi, C.-K. Kang, and S.H. Lee. 2014. Long-term annual primary production in the Ulleung Basin as a biological hot spot in the East/Japan Sea. Journal of Geophysical Research: Oceans 119: 3002–3011.

    Google Scholar 

  • Kara, A.B., P.A. Rochford, and H.E. Hurlburt. 2003. Mixed layer depth variability over the global ocean. Journal of Geophysical Research: Oceans 108 (C3).

  • Kelly, K.A. 1988. Comment on “Empirical orthogonal function analysis of advanced very high resolution radiometer surface temperature patterns in Santa Barbara channel”. Journal of Geophysical Research 93: 15753–15754.

    Article  Google Scholar 

  • Kim, K.-R., and K. Kim. 1996. What is happening in the East Sea (Japan Sea)?: recent chemical observations from CREAMS 93–96. Journal of the Korean Society of Oceanography 31: 164–172.

    Google Scholar 

  • Kim, H.-C., S.J. Yoo, and I.S. Oh. 2007. Relationship between phytoplankton bloom and wind stress in the sub-polar frontal area of the Japan/East Sea. Journal of Marine System 67: 205–216.

    Article  Google Scholar 

  • Kim, K., K.R. Kim, D.H. Min, Y. Volkov, J.H. Yoon, and M. Takematsu. 2001. Warming and structural changes in the East (Japan) Sea: a clue to future changes in global oceans? Geophysical Research Letters 28 (17): 3293–3296.

    Article  Google Scholar 

  • Kim, S.W., S. Saitoh, J. Ishizaka, Y. Isoda, and M. Kishino. 2000. Temporal and spatial variability of phytoplankton pigment concentration in the Japan Sea derived from CZCS images. Journal of Oceanography 56: 527–538.

    Article  Google Scholar 

  • Kim, T.S., K.A. Park, X. Li, and S. Hong. 2014. SAR-derived wind fields at the coastal region in the East/Japan Sea and relation to coastal upwelling. International Journal of Remote Sensing 35 (11–12): 3947–3965.

    Article  Google Scholar 

  • Kim, T.W., K. Lee, R.G. Najjar, H.D. Jeong, and H.J. Jeong. 2011. Increasing N abundance in the northwestern Pacific Ocean due to atmospheric nitrogen deposition. Science 334 (6055): 505–509.

    Article  CAS  Google Scholar 

  • Knauss, J.A. 1997. Introduction to physical oceanography. Second ed. New Jersey: Prentice-Hall, Inc..

    Google Scholar 

  • Lagerloef, G.S.E., and R.L. Bernstein. 1988. Empirical orthogonal function analysis of advance very high resolution radiometer surface temperature patterns in Santa Barbara channel. Journal of Geophysical Research 93: 6863–6873.

    Article  Google Scholar 

  • Lee, J.C., and J.Y. Na. 1985. Structure of upwelling off the southeast coast of Korea. Journal of the Korean Society of Oceanography 20: 6–19.

    Google Scholar 

  • Li, H., F. Xu, W. Zhou, D. Wang, J.S. Wright, Z. Liu, and Y. Lin. 2017. Development of a global gridded Argo data set with Barnes successive corrections. Journal of Geophysical Research: Oceans 122: 866–889.

    Google Scholar 

  • Martin, S., and M. Kawase. 1998. The southern flux of sea ice in the Tatarskiy Strait, Japan Sea and the generation of the Liman Current. Journal of Marine Research 56 (1): 141–155.

    Article  Google Scholar 

  • Menzel, D.W., and J.H. Ryther. 1961. Annual variations in primary production of the Sargasso sea off Bermuda. Deep Sea Research 7 (4): 282–288.

  • Muller-Karger, F.E., J.P. Smith, S. Werner, R. Chen, M. Roffer, Y. Liu, et al. 2015. Natural variability of surface oceanographic conditions in the offshore Gulf of Mexico. Progress in Oceanography 134: 54–76.

    Article  Google Scholar 

  • Na, H., K.-Y. Kim, K.-I. Chang, J.J. Park, K. Kim, and S. Minobe. 2012. Decadal variability of the upper ocean heatcontent in the East/Japan Sea and its possible relationship to northwestern Pacific variability. Journal of Geophysical Research 117: C02017.

    Google Scholar 

  • Nagata, H. 1994. The relationship between chlorophyll a and transparency in the southern Japan Sea. Bulletin of the Japan Sea National Fisheries Research Institute 44: 39–47.

    Google Scholar 

  • National Oceanic and Atmospheric Administration (NOAA), 2016. Extended reconstructed sea surface temperature (ERSST.v4). National Centers for Environmental Information. Accessed March 2016. www.ncdc.noaa.gov/data-access/marineocean-data/extended-reconstructed-sea-surface-temperature-ersst

  • Olita, A., S. Sparnocchia, S. Cusí, L. Fazioli, R. Sorgente, J. Tintoré, and A. Ribotti. 2014. Observations of a phytoplankton spring bloom onset triggered by a density front in NW Mediterranean. Ocean Science 10: 657–666.

    Article  Google Scholar 

  • Onitsuka, G., and T. Yanagi. 2005. Differences in ecosystem dynamics between the northern and southern parts of the Japan Sea: analyses with two ecosystem models. Journal of Oceanography 61 (3): 415–433.

    Article  Google Scholar 

  • Onitsuka, G., T. Yanagi, and J.H. Yoon. 2007. A numerical study on nutrient sources in the surface layer of the Japan Sea using a coupled physical-ecosystem model. Journal of Geophysical Research: Oceans 112 (C5).

  • Park, K.A., D.S. Ullman, K. Kim, J.Y. Chung, and K.R. Kim. 2007. Spatial and temporal variability of satellite-observed Subpolar Front in the East/Japan Sea. Deep Sea Research Part I: Oceanographic Research Papers 54 (4): 453–470.

  • Park, K.-A., C.-K. Kang, K.-R. Kim, and J.-E. Park. 2014. Role of sea ice on satellite-observed chlorophyll-a concentration variations during spring bloom in the East/Japan Sea. Deep Sea Research Part I: Oceanographic Research Papers 83: 34–44.

    Article  CAS  Google Scholar 

  • Park, K.-A., H.-J. Chae, and J.-E. Park. 2013a. Characteristics of satellite chlorophyll-a concentration speckles and a removal method in a composite process in the East/Japan Sea. International Journal of Remote Sensing 34 (13): 4610–4635.

    Article  Google Scholar 

  • Park, K.-A., J.-E. Park, B.-J. Choi, D.-S. Byun, and E.-I. Lee. 2013b. An oceanic current map of the East Sea for science textbooks based on scientific knowledge acquired from oceanic measurements. Journal of the Korean Society of Oceanography 18 (4): 234–265.

    Google Scholar 

  • Park, K.-A., J.E. Park, M.S. Lee, and C.K. Kang. 2012. Comparison of composite methods of satellite chlorophyll-a concentration data in the East Sea. Korean Journal of Remote Sensing 28 (6): 635–651.

    Article  Google Scholar 

  • Park, K.-A., E.-Y. Lee, E. Chang, and S. Hong. 2015. Spatial and temporal variability of sea surface temperature and warming trends in the Yellow Sea. Journal of Marine Systems 143: 24–38.

  • Park, K.-A., K. Kim, P.C. Cornillon, and J.Y. Chung. 2006. Relationship between satellite-observed cold water along the Primorye coast and sea ice in the East Sea (the Sea of Japan). Geophysical Research Letters 33 (10).

  • Park, K.-A., and K.R. Kim. 2010. Unprecedented coastal upwelling in the East/Japan Sea and linkage to long-term large-scale variations. Geophysical Research Letters 37 (9).

  • Sathyendranath, S., R. Ji, and H.I. Browman. 2015. Revisiting Sverdrup’s critical depth hypothesis. ICES Journal of Marine Science 72: 1892–1896. https://doi.org/10.1093/icesjms/fsv110.

    Article  Google Scholar 

  • Senjyu, T. 1999. The Japan Sea intermediate water; its characteristics and circulation. Journal of Oceanography 55 (2): 111–122.

    Article  CAS  Google Scholar 

  • Sverdrup, H.U. 1953. On conditions for the vernal blooming of phytoplankton. Journal du Conseil International pour l'Exploration de la Mer 18: 287–295.

    Article  Google Scholar 

  • Venegas, R.M., P.T. Strub, E. Beier, R. Letelier, A.C. Thomas, T. Cowles, C. James, L. Soto-Mardones, and C. Cabrera. 2008. Satellite-derived variability in chlorophyll, wind stress, sea surface height, and temperature in the northern California Current System. Journal of Geophysical Research 113: C03015.

    Article  CAS  Google Scholar 

  • Yamada, K., and J. Ishzaka. 2006. Estimation of interdecadal change of spring bloom timing, in the case of the Japan Sea. Geophysical Research Letters 33: L02608.

    Article  Google Scholar 

  • Yamada, K., J. Ishizaka, and H. Nagata. 2005. Spatial and temporal variability of satellite estimated primary production in the Japan Sea from 1998 to 2002. Journal of Oceanography 61: 857–869.

    Article  CAS  Google Scholar 

  • Yamada, K., J. Ishzaka, S. Yoo, H.-C. Kim, and S. Chiba. 2004. Seasonal and interannual variability of sea surface chlorophyll a concentration in the Japan/East Sea (JES). Progress in Oceanography 61: 193–211.

    Article  Google Scholar 

  • Yoo, S., and H.-C. Kim. 2004. Suppression and enhancement of the spring bloom in the southwestern East Sea/Japan Sea. Deep-Sea Research II 51: 1093–1111.

    Article  CAS  Google Scholar 

  • Yoo, S., and J. Park. 2009. Why is the southwest the most productive region of the East Sea/Sea of Japan? Journal of Marine Systems 78 (2): 301–315.

    Article  Google Scholar 

  • Yoon, S.-T., K.-I. Chang, S. Nam, T. Rho, D.-J. Kang, T. Lee, K.-A. Park, V. Lobanov, D. Kaplunenko, P. Tishchenko, K.-R. Kim. 2018. Re-initiation of bottom water formation in the East Sea (Japan Sea) in a warming world. Scientific Reports 8 (1): 1576.

Download references

Acknowledgments

This research was a part of the project titled “Long-term change of structure and function in marine ecosystems of Korea” and “Deep Water Circulation and Material Cycling in the East Sea (20160040)” funded by the Ministry of Oceans and Fisheries, Korea.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kyung-Ae Park.

Additional information

Communicated by Richard C. Zimmerman

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Park, JE., Park, KA., Kang, CK. et al. Satellite-Observed Chlorophyll-a Concentration Variability and Its Relation to Physical Environmental Changes in the East Sea (Japan Sea) from 2003 to 2015. Estuaries and Coasts 43, 630–645 (2020). https://doi.org/10.1007/s12237-019-00671-6

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-019-00671-6

Keywords

Navigation