Skip to main content
Log in

Long-Term Effects of Sheep Grazing in Various Densities on Marsh Properties and Vegetation Dynamics in Two Different Salt-Marsh Zones

  • Published:
Estuaries and Coasts Aims and scope Submit manuscript

Abstract

For conservation management of grassland ecosystems, an important question is under which conditions large grazers induce compositional and structural variation in plant communities, which is a prerequisite for high biodiversity. Here we used two long-term projects on the mainland salt marshes of the Wadden Sea to test the hypothesis that long-term grazing management with different stocking densities results in plant communities with distinctively different plant species composition and vegetation structure. The two projects took place on a low clayey and a high sandy salt marsh with different stocking densities of sheep: 0, 1.5, 3.5, 4.5 and the initially 10 sheep ha−1, where measurements were collected 11, 15, 19 and 23 years after the start of the project. Moreover, grazers affect abiotic conditions by reducing soil-redox potential and surface elevation, thereby driving composition and structure of salt-marsh vegetation. On the low salt marsh, a continued high stocking density (10 sheep ha−1) resulted in succession from the early-successional Puccinellia maritima community to the late-successional Atriplex portulacoides community. On the high salt marsh, the early-successional Festuca rubra community was maintained under all stocking densities. Cessation of grazing resulted in succession to the Elytrigia atherica community in both salt-marsh types. Intermediate stocking densities (1.5, 3 or 4.5 sheep ha−1) resulted in a mosaic of tall vegetation and patches of lawn, i.e. short-grazed vegetation, where Puccinellia maritima lawn occurred interspersed with patches of the Festuca rubra and tall Elytrigia atherica communities in both salt-marsh types. Effects of grazers were influenced by the presence of watering points near the sea wall. To conclude, our results show how joint interactions between grazers and abiotic conditions drive vegetation diversity and heterogeneity, with implications for ecosystem functions and services such as wildlife biodiversity and coastal protection.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

Data Availability

Data will be uploaded and available from the University of Groningen Data Repository DataverseNL Dataverse Network (https://dataverse.nl/dvn/dv/GELIFES, permanent handle: https://hdl.handle.net/10411/34QBYP).

References

  • Adler, P.B., and S.A. Hall. 2005. The development of forage production and utilization gradients around livestock watering points. Landscape Ecology 20: 319–333.

    Google Scholar 

  • Andresen, H., J.P. Bakker, M. Brongers, B. Heydemann, and U. Irmler. 1990. Long-term changes of salt marsh communities by cattle grazing. Vegetatio 89: 137–148.

    Google Scholar 

  • Bakker, J.P., M. Dijkstra, and P.T. Russchen. 1985. Dispersal, germination and early establishment of halophytes and glycophytes on a grazed and abandoned salt marsh gradient. New Phytologist 101: 291–308.

    Google Scholar 

  • Bakker, J.P., P. Esselink, K.S. Dijkema, W.E. Van Duin, and D.J. De Jong. 2002. Restoration of salt marshes. Hydrobiologia 478: 29–51.

    Google Scholar 

  • Bakker, J.P., D. Bos, and Y. De Vries. 2003. To graze or not to graze: that is the question. In Challenges to the Wadden Sea area, ed. W.J. Wolff, K. Essink, A. Kellermann, and M.A. Van Leeuwe, 67–87. Proceedings 10th International Scientific Wadden Sea Symposium. Ministry of Agriculture, Nature Management and Fisheries and Department of Marine Biology, University of Groningen.

  • Berg, G., P. Esselink, M. Groeneweg, and K. Kiehl. 1997. Micropatterns in Festuca rubra-dominated salt-marsh vegetation induced by sheep grazing. Plant Ecology 132: 1–14.

    Google Scholar 

  • Bockelmann, A.C., and R. Neuhaus. 1999. Competitive exclusion of Elymus athericus from a high stress habitat in a European salt marsh. Journal of Ecology 87: 503–513.

    Google Scholar 

  • Bos, D., J.P. Bakker, Y. De Vries, and S. Van Lieshout. 2002. Long-term vegetation changes in experimentally grazed and ungrazed back-barrier marshes in the Wadden Sea. Applied Vegetation Science 5: 45–54.

    Google Scholar 

  • Bos, D., M.J.J.E. Loonen, M. Stock, F. Hofeditz, S. Van der Graaf, and J.P. Bakker. 2005. Utilisation of Wadden Sea salt marshes by geese in relation to livestock grazing. Journal for Nature Conservation 15: 1–15.

    Google Scholar 

  • Bouma, T.J., J. Van Belzen, T. Balke, Z. Zhu, L. Airoldi, A.J. Blight, et al. 2014. Identifying knowledge gaps hampering application of intertidal habitats in coastal protection: opportunities and steps to take. Coastal Engineering 87: 147–157.

    Google Scholar 

  • Chang, E.R., R.M. Veeneklaas, J.P. Bakker, P. Daniels, and P. Esselink. 2016. What factors determine restoration success of a salt marsh ten years after de-embankment? Applied Vegetation Science 19: 66–77.

    Google Scholar 

  • Cid, M.S., and M.A. Brizuela. 1998. Heterogeneity in tall fescue pasture created and sustained by cattle grazing. Journal of Range Management 51: 644–649.

    Google Scholar 

  • Daleo, P., J. Alberti, B.M. Bruschetti, P. Martinetto, J. Pascula, and O. Iribarne. 2017. Herbivory and presence of a dominant competitor interactively affect salt marsh plant diversity. Journal of Vegetation Science 28: 1178–1186.

    Google Scholar 

  • Davidson, K., M. Fowler, M. Skov, S. Doerr, N. Beaumont, and J. Griffin. 2017. Livestock grazing alters multiple ecosystem properties and services in salt marshes: a meta-analysis. Journal of Applied Ecology 54: 1395–1405.

    CAS  Google Scholar 

  • Davy, A.J., J.P. Bakker, and M.E. Figueroa. 2009. Human modification of European salt marshes. In Human impacts on salt marshes, ed. B.R. Silliman, E.D. Grosholz, and M.D. Bertness, 311–335. Berkeley: University of California Press.

    Google Scholar 

  • Davy, A.J., M.J.H. Brown, H.L. Mossman, and A. Grant. 2011. Colonization of a newly developing salt marsh: disentangling independent effects of elevation and redox potential on halophytes. Journal of Ecology 99: 1350–1357.

    CAS  Google Scholar 

  • De Leeuw, J., H. Olff, and J.P. Bakker. 1990. Year-to-year variation in salt marsh production as related to inundation and rainfall deficit. Aquatic Botany 36: 139–151.

    Google Scholar 

  • Dierßen, K., H. Von Glahn, W. Härdtle, H. Hoper, U. Mierwald, J. Schrautzer, and A. Wolf. 1988. Rote Liste der Pflanzen- gesellschaften Schleswig-Holsteins. Schriftenreihe. Landesamt für Naturschutz und Landschaftspflege Schleswig-Holstein 6.

  • Dierßen, K., Eischeid, I., Gettner, S., Hamann, U., Kiehl, K., Walter, J., ... Haase, A. 1994 Die Beweidungsexperimente im Sönke-Nissen-Koog- und Friedrichskoog - Vorland. Abschlußbericht Ökosystemforschung Wattenmeer TV A 5.2, A 5.3, Bioindikatoren im Supralittoral, Teilbericht A/C. UBA-Forschungsbericht 10802085/01.

  • Duncan, P., T. Foose, I. Gordon, C. Gakahu, and M. Lloyd. 1990. Comparative nutrient extraction from forages by grazing bovids and equids – a test of the nutritional model of equid bovid competition and coexistence. Oecologia 84 (3): 411–418.

    Google Scholar 

  • Erchinger, H.F., H.G. Coldewey, and C. Meyer. 1996. Interdisciplinäre Erforschung des Deichvorlandes im Forschungsvorhaben Erosionsfestigkeit von hellerns. Die Küste 58: 1–45.

    Google Scholar 

  • Esselink, P., W.E. Van Duin, J. Bunje, J. Cremer, E.O. Folmer, J. Frikke, et al. 2017. Salt marshes. In Wadden Sea quality status report 2017, ed. S. Kloepper et al. Wilhelmshaven. qsr.waddensea-worldheritage.org/reports/salt-marshes: Common Wadden Sea Secretariat.

    Google Scholar 

  • Evans, D.M., N. Villar, N.A. Littlewood, R.J. Pakeman, S.A. Evans, P. Dennis, et al. 2015. The cascading impacts of livestock grazing in upland ecosystems: a 10-year experiment. Ecosphere 6 (3): article 42.

    Google Scholar 

  • Fariña, J.M., Q. He, B.R. Silliman, and M.D. Bertness. 2016. Bottom-up and top-down human impact interact to affect a protected coastal Chilean marsh. Ecology 97 (3): 640–648.

    Google Scholar 

  • Fokkema, W., W. De Boer, H.P. Van der Jeugd, A. Dokter, B.A. Nolet, L.J. De Kok, et al. 2016. The nature of plants adaptations to salinity stress has trophic consequences. Oikos 125: 804–811.

    CAS  Google Scholar 

  • Furbish, C.E., and M. Albano. 1994. Selective herbivory and plant community structure in a mid-Atlantic salt marsh. Ecology 75: 1015–1022.

    Google Scholar 

  • Grant, S.A., D.E. Suckling, H.K. Smith, L. Torvell, T.D.A. Forbes, and J. Hodgson. 1985. Comparative studies of diet selection by sheep and cattle: the hill grasslands. Journal of Ecology 73: 987–1004.

    Google Scholar 

  • Hautier, Y., F. Isbell, E.T. Borer, E.W. Seabloom, W.S. Harpole, and E.M. Lind. 2018. Local loss and spatial homogenization of plant diversity reduce ecosystem multifunctionality. Nature Ecology and Evolution 2 (1): 50–56.

    Google Scholar 

  • Hector, A., B. Schmid, C. Beierkuhnlein, M.C. Caldeira, M. Diemer, and P.G. Dimitrakopoulos. 1999. Plant diversity and productivity experiments in European grasslands. Science 286 (5442): 1123–1127.

    CAS  Google Scholar 

  • Heydemann, B. 1985. The relations between plants and phytophagous insects in the salt marshes of Northwestern Europe. Mitteilungen Deutsche Gesellschaft für Allgemeine Angewandte Entomologie 4: 244–247.

    Google Scholar 

  • Howison, R.A., H. Olff, R. Steever, and C. Smit. 2015. Large herbivores change the direction of interactions with plant communities along a salt marsh stress gradient. Journal of Vegetation Science 26: 1159–1170.

    Google Scholar 

  • Howison, R.A., H. Olff, J. Van de Koppel, and C. Smit. 2017. Biotically driven vegetation mosaics in grazing ecosystems: the battle between bioturbation and biocompaction. Ecological Monographs 87: 363–378.

    Google Scholar 

  • IPCC. 2013. Climate change 2013: The Fifth Assessment Report of the Intergovernmental Panel of Climate Change. Cambridge University Press.

  • Irmler, U., and B. Heydemann. 1986. Die Ökologische Problematik der Beweidung van Salzwiesen an der niedersächsischen Küste – am Beispiel der Leybucht. Naturschutz und Landschaftspflege Niedersachsen 11: 1–115.

    Google Scholar 

  • Jensen, A. 1985. The effect of cattle and sheep grazing on salt-marsh vegetation at Skallingen, Denmark. Vegetatio 60: 37–48.

    Google Scholar 

  • Kiehl, K., I. Eischeid, S. Gettner, and J. Walter. 1996. The impact of different sheep grazing intensities on salt-marsh vegetation in Northern Germany. Journal of Vegetation Science 7: 99–106.

    Google Scholar 

  • Kiehl, K., P. Esselink, and J.P. Bakker. 1997. Nutrient limitation and plant species composition in temperate salt marshes. Oecologia 111 (3): 325–330.

    CAS  Google Scholar 

  • Kirwan, M.L., S. Temmerman, E.E. Skeehan, G.R. Guntenspergen, and G.S. Fagherazzi. 2016. Overestimation of marsh vulnerability to sea level rise. Nature Climate Change 6: 253–260.

    Google Scholar 

  • Kleyer, M., R.M. Bekker, I.C. Knevel, J.P. Bakker, K. Thompson, M. Sonnenschein, P. Poschlod, et al. 2008. The LEDA Traitbase: a database of life-history traits of the Northwest European flora. Journal of Ecology 96: 1266–1274.

    Google Scholar 

  • Knutson, P.L., R.A. Brochu, W.N. Seelig, and M. Inskee. 1982. Wave damping in Spartina alterniflora marshes. Wetlands 2: 87–104.

    Google Scholar 

  • Levin, P.S., and J. Ellis. 2002. Indirect effects of feral horses on estuarine communities. Conservation Biology 16: 1363–1371.

    Google Scholar 

  • Meyer, H., and H. Reinke. 1996. Changes in the biocoenotic structure of the invertebrate fauna of saltmarshes caused by different sheep grazing intensities. Faunistich Oekologische. Mitteilungen. 7: 109–151.

    Google Scholar 

  • Meyer, H., H. Fock, A. Haase, H.D. Reinke, and I. Tulowitzki. 1995. Structure of the invertebrate fauna in salt marshes of the Wadden Sea coast of Schleswig-Holstein influenced by sheep-grazing. Helgolander Meerseuntersuchungen 49: 563–589.

    Google Scholar 

  • Milchunas, D.G., and W.K. Lauenroth. 1993. Quantitative effects of grazing on vegetation and soils over a global range of environments. Ecological Monographs 63: 27–366.

    Google Scholar 

  • Milchunas, D.G., O.E. Sala, and W.K. Lauenroth. 1988. A generalized model of the effects of grazing by large herbivores on grassland community structure. American Naturalist 13: 87–106.

    Google Scholar 

  • Minden, V., and M. Kleyer. 2014. Internal and external regulation of plant stoichiometry. Plant Biology 16 (5): 897–907.

    CAS  Google Scholar 

  • Möller, I. 2006. Quantifying saltmarsh vegetation and its effect on wave height dissipation: Results from a UK east coast saltmarsh. Estuarine, Coastal and Shelf Science 69: 337–351.

    Google Scholar 

  • Neuhaus, R., T. Stelter, and K. Kiehl. 1999. Sedimentation in salt marshes affected by grazing regime, topographical patterns and regional differences. Senckenbergiana Maritima 29: 113–116.

    Google Scholar 

  • Nolte, S., F. Müller, M. Schuerch, A. Wanner, P. Esselink, J.P. Bakker, and K. Jensen. 2013. Does livestock grazing affect sediment deposition and accretion rates in salt marshes? Estuarine, Coastal and Shelf Science 135: 296–305.

    CAS  Google Scholar 

  • Nolte, S., C. Van der Weyde, P. Esselink, C. Smit, S.E. Van Wieren, and J.P. Bakker. 2017. Behaviour of horses and cattle at two stocking densities in a coastal salt marsh. Journal of Coastal Conservation 21: 369–379.

    Google Scholar 

  • Norris, K., T. Cook, B. O’Dowd, and C. Durdin. 1997. The density of redshank Tringa totanus breeding on the salt marshes of the wash in relation to habitat and its grazing management. Journal of Applied Ecology 3: 999–1013.

    Google Scholar 

  • Olff, H., and M.E. Ritchie. 1998. Effects of herbivores on grassland plant diversity. Trends in Ecology and Evolution 13 (7): 261–265.

    CAS  Google Scholar 

  • Olff, H., J. De Leeuw, J.P. Bakker, R.J. Platerink, H.J. Van Wijnen, and W. De Munck. 1997. Vegetation succession and herbivory on a salt marsh: changes induced by sea level rise and silt deposition along an elevational gradient. Journal of Ecology 85: 799–814.

    Google Scholar 

  • Petersen, J., Kers, B. and Stock, M. 2014. TMAP-typology of coastal vegetation in the Wadden Sea area. Trilateral Salt Marsh and Dunes Expert Group. Wadden Sea Ecosystems No. 32. Common Wadden Sea secretariat, Wilhelmshaven, Germany.

  • Pétillon, J., F. Ysnel, A. Canard, and J.C. Lefeuvre. 2005. Impact of an invasive plant (Elymus athericus) on the conservation value of tidal salt marshes in western France and implications for management: Responses of spider populations. Biological Conservation 126: 103–117.

    Google Scholar 

  • R Development Core Team. 2010. A language and development for statistical computing. Vienna: R Foundation for Statistical Computing.

    Google Scholar 

  • Ranwell, D.S. 1961. Spartina salt marshes in southern England 1. The effects of sheep grazing at the upper limits of Spartina marsh in Bridgwater Bay. Journal of Ecology 49: 325–340.

    Google Scholar 

  • Rook, A.J., B. Dumont, J. Isselstein, K. Osuro, M.F. WallisDeVries, G. Parente, and J. Mills. 2004. Matching type of livestock to desired biodiversity outcomes in pastures – a review. Biological Conservation 119: 137–150.

    Google Scholar 

  • Rupprecht, F., A. Wanner, M. Stock, and K. Jensen. 2015. Succession in salt marshes – large-scale and long-term patterns after abandonment of grazing and drainage. Applied Vegetation Science 18: 86–98.

    Google Scholar 

  • Sammul, M., K. Kauer, and T. Koster. 2012. Biomass accumulation during reed encroachment reduces efficiency of restoration of Baltic coastal grasslands. Applied Vegetation Science 15: 219–230.

    Google Scholar 

  • Schrama, M.J.J., P. Heijing, H.J. Van Wijnen, J.P. Bakker, M.P. Berg, and H. Olff. 2013. Herbivore trampling as an alternative pathway for explaining differences in nitrogen mineralization in moist grasslands. Oecologia 172 (1): 231–243.

    Google Scholar 

  • Schröter, D., W. Cramer, R. Leemans, I.C. Prentice, M.B. Araújo, and N.W. Arnell. 2005. Ecology: ecosystem service supply and vulnerability to global change in Europe. Science 310 (5752): 1333–1337.

    Google Scholar 

  • Silliman, B.R., T. Modzder, C. Angelini, J.E. Brundage, J.P. Bakker, P. Esselink, J. Van de Koppel, and A.H. Baldwin. 2014. Livestock as a potential biological control agent for an invasive wetland plant. PeerJ 2 (1-19): e567.

    Google Scholar 

  • Stock, M. 1993. Salt marshes in Schleswig-Holstein: from a green towards a natural succession. Wadden Sea Newsletter 1993 (1): 11–14.

    Google Scholar 

  • Suchrow, S., and K. Jensen. 2010. Plant species responses to an elevational gradient in German North Sea salt marshes. Wetlands 30: 735–746.

    Google Scholar 

  • Suchrow, S., M. Stock, and K. Jensen. 2015. Patterns of plant species richness along environmental gradients in German North Sea salt marshes. Estuaries and Coasts 38: 296–309.

    CAS  Google Scholar 

  • Sullivan, M.J.P., A.J. Davy, A. Grant, and H.L. Mossman. 2018. Is saltmarsh restoration success constrained by matching natural environments or altered succession? A test using niche models. Journal of Applied Ecology 55 (3): 1207–1217.

    Google Scholar 

  • Van Bochove, E., S. Beauchemin, and G. Theriault. 2002. Continuous multiple measurement of soil redox potential using platinum microelectrodes. Soil Science Society of America Journal 66: 1813–1820.

    Google Scholar 

  • Van der Meijden, R. 2005. Heukels’ Flora van Nederland. Groningen: Wolters-Noordhoff.

    Google Scholar 

  • Van Klink, R., C. Rickert, R. Vermeulen, M.F. WallisDeVries, O. Vorst, and J.P. Bakker. 2013. Grazed vegetation mosaics do not maximize arthropod diversity: evidence from salt marshes. Biological Conservation 164: 150–157.

    Google Scholar 

  • Van Klink, R., M. Schrama, S. Nolte, J.P. Bakker, M.F. WallisDeVries, and M.P. Berg. 2015. Defoliation and soil compaction jointly drive grazing effects on plants and soil arthropods on clay soils. Ecosystems 18: 671–685.

    Google Scholar 

  • Van Klink, R., S. Nolte, F. Mandema, G. Lagendijk, M.F. WallisDeVries, P. Esselink, et al. 2016. Optimising grazing management for biodiversity conservation across trophic groups – effects of livestock species and stocking density on salt marshes. Agriculture, Ecosystems and Environment 235: 329–339.

    Google Scholar 

  • Wanner, A., S. Suchrow, K. Kiehl, W. Meyer, N. Pohlmann, M. Stock, and K. Jensen. 2014. Scale matters: impact of management regime on plant species richness and vegetation type diversity in Wadden Sea salt marshes. Agriculture Ecosystems and Environment 182: 69–79.

    Google Scholar 

  • Zhang, H.Q., and R.F. Horn. 1996. Effect of sheep-grazing on the soil physical properties of a coastal salt marsh (2): soil strength. Zeitschrift für Kulturtechnik und Landentwicklung 37: 214–220.

    Google Scholar 

Download references

Acknowledgements

We thank the participants of the Coastal Ecology Expeditions 1999, 2003, 2005, 2007, 2009 and 2011 of the University of Groningen for their help in collecting data. Dick Visser enhanced the figures.

Funding

This study was partially supported by the ‘Waddenfonds’ (Project WF200451).

Author information

Authors and Affiliations

Authors

Contributions

M.St. conceived the project, J.B., M.Sc. and R.V. designed the field sampling methodology, M.Sc., P.E., P.D., S.N., R.V., Y.V. and M.St. collected the data, N.B. analysed the data with input from P.D., M.Sc. and R.V., J.B. led the writing of the manuscript, all authors contributed critically to the drafts and gave final approval for publication.

Corresponding author

Correspondence to J. P. Bakker.

Additional information

Communicated by Stijn Temmerm

Communicated by Stijn Temmerm

Electronic Supplementary Material

Table S1

(DOCX 22 kb)

Fig. S1

Expected mean vegetation height (cm) for (A) low and (B) high salt marsh as functions of the distance to watering points and sheep stocking density based on predictions of the regression model. More specifically, vegetation height peaked at a lower stocking density and decreased more steeply for each unit increase in stocking density in the low than the high salt marsh. Similarly, vegetation height increased at a steeper rate for each unit increase in distance from watering point in the low than high salt marsh. (PDF 314 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bakker, J., Schrama, M., Esselink, P. et al. Long-Term Effects of Sheep Grazing in Various Densities on Marsh Properties and Vegetation Dynamics in Two Different Salt-Marsh Zones. Estuaries and Coasts 43, 298–315 (2020). https://doi.org/10.1007/s12237-019-00680-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s12237-019-00680-5

Keywords

Navigation