Skip to main content
Log in

A large-Stokes-shift fluorescent probe for Zn2+ based on AIE, and application in live cell imaging

  • Research Paper
  • Published:
Analytical and Bioanalytical Chemistry Aims and scope Submit manuscript

Abstract

A fluorescence-enhanced sensor based on aggregation-induced emission (AIE) was synthesized using a di(2-picolyl)amine (DPA) group as a highly selective metal chelating agent for Zn2+. The combination of the probe and Zn2+ was achieved in an environment where the volume fraction of water was 90%, giving the probe good biocompatibility, and a large Stokes shift (100 nm) occurred after Zn2+ was combined with the probe. The obvious color change makes the probe visible to the naked eye, and gives it a high signal-to-noise ratio, and high contrast, and minimizes self-absorption. Because of the high selectivity of the DPA group to Zn2+, the sensitivity of the probe to detect Zn2+ has been improved. The mechanism of the formation of complexes between the probe and Zn2+ was confirmed by nuclear magnetic resonance spectroscopy (NMR), high-resolution mass spectrometry (HRMS), and particle size distribution. Under the optimal experimental conditions, the linear fluorescence reaction of Zn2+ was good, between 0.2 and 18 μM, and the detection limit was 1.3 × 10−7 M. The low toxicity and excellent membrane permeability of the probe in living cells enable it to be efficiently applied for Zn2+ imaging in cells.

Graphical abstract

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10

Similar content being viewed by others

References

  1. Chang C-H, Griniene R, Su Y-D, Yeh C-C, Kao H-C, Grazulevicius JV, et al. Efficient red phosphorescent OLEDs employing carbazole-based materials as the emitting host. Dyes Pigments. 2015;122:257–63.

    CAS  Google Scholar 

  2. Li P, Zhao Y, Yao L, Nie H, Zhang M. A simple, selective, fluorescent iron(III) sensing material based on peripheral carbazole. Sensors Actuators B Chem. 2014;191:332–6.

    CAS  Google Scholar 

  3. Deshapande N, Belavagi NS, Panchamukhi SI, Rabinal MH, Khazi IAM. Synthesis and optoelectronic properties of thieno[2,3-b]thiophene based bis 1,3,4-oxadiazole derivatives as blue fluorescent material for use in organic light emitting diodes. Opt Mater. 2014;37:516–9.

    CAS  Google Scholar 

  4. Li W, Wang J, Xie Y, Tebyetekerwa M, Qiu Z, Tang J, et al. Water-based fluorescent paint: presenting a novel approach to study and solve the aggregation caused quench (ACQ) effect in traditional fluorescent materials. Prog Org Coat. 2018;120:1–9.

    Google Scholar 

  5. Yan Z, Lin X, Guo H, Yang F. A novel fluorescence sensor for K+ based on bis-Bodipy: the ACQ effect controlled by cation complexation of pseudo crown ether ring. Tetrahedron Lett. 2017;58(31):3064–8.

    CAS  Google Scholar 

  6. Kagatikar S, Sunil D. Aggregation-induced emission of azines: An up-to-date review. J Mol Liq. 2019;292:111371.

    CAS  Google Scholar 

  7. He Z, Ke C, Tang BZ. Journey of aggregation-induced emission research. ACS Omega. 2018;3(3):3267–77.

    CAS  PubMed  PubMed Central  Google Scholar 

  8. Mei J, Hong Y, Lam JW, Qin A, Tang Y, Tang BZ. Aggregation-induced emission: the whole is more brilliant than the parts. Adv Mater. 2014;26(31):5429–79.

    CAS  PubMed  Google Scholar 

  9. Wang Y, Zhang Y, Wang J, Liang XJ. Aggregation-induced emission (AIE) fluorophores as imaging tools to trace the biological fate of nano-based drug delivery systems. Adv Drug Deliv Rev. 2019;143:161–76.

    CAS  PubMed  Google Scholar 

  10. Mao L, Liu Y, Yang S, Li Y, Zhang X, Wei Y. Recent advances and progress of fluorescent bio−/chemosensors based on aggregation-induced emission molecules. Dyes Pigments. 2019;162:611–23.

    CAS  Google Scholar 

  11. Chen X, Wang L, Yang X, Tang L, Zhou Y, Liu R, et al. A new aggregation-induced emission active fluorescent probe for sensitive detection of cyanide. Sensors Actuators B Chem. 2017;241:1043–9.

    CAS  Google Scholar 

  12. Yang B, Zhang X, Zhang X, Huang Z, Wei Y, Tao L. Fabrication of aggregation-induced emission based fluorescent nanoparticles and their biological imaging application: recent progress and perspectives. Mater Today. 2016;19(5):284–91.

    CAS  Google Scholar 

  13. Weiss JH, Sensi SL, Koh JY. Zn2+: a novel ionic mediator of neural injury in brain disease. Trends Pharmacol Sci. 2000;21(10):395–401.

    CAS  PubMed  Google Scholar 

  14. Andrási E, Farkas É, Scheibler H, Réffy A, Bezúr L. Al, Zn, cu, Mn and Fe levels in brain in Alzheimer's disease. Arch Gerontol Geriatr. 1995;21(1):89–97.

    PubMed  Google Scholar 

  15. Ferrada E, Arancibia V, Loeb B, Norambuena E, Olea-Azar C, Huidobro-Toro JP. Stoichiometry and conditional stability constants of cu(II) or Zn(II) clioquinol complexes; implications for Alzheimer's and Huntington's disease therapy. Neurotoxicology. 2007;28(3):445–9.

    CAS  PubMed  Google Scholar 

  16. Giacconi R, Giuli C, Casoli T, Balietti M, Costarelli L, Provinciali M, et al. Acetylcholinesterase inhibitors in Alzheimer's disease influence zinc and copper homeostasis. J Trace Elem Med Biol. 2019;55:58–63.

    CAS  PubMed  Google Scholar 

  17. Hassan MA, El-Nekeety AA, Abdel-Aziem SH, Hassan NS, Abdel-Wahhab MA. Zinc citrate incorporation with whey protein nanoparticles alleviate the oxidative stress complication and modulate gene expression in the liver of rats. Food Chem Toxicol. 2019;125:439–51.

    CAS  PubMed  Google Scholar 

  18. Zhou F, Li C, Zhu H, Li Y. A novel method for simultaneous determination of zinc, nickel, cobalt and copper based on UV–vis spectrometry. Optik. 2019;182:58–64.

    CAS  Google Scholar 

  19. Zhu H, Wu S, Li Y, Cheng F, Wang X. A prediction method for intervals of trace ions concentration in zinc sulfate solution based on UV-vis spectroscopy. Optik. 2019;194:163065.

    Google Scholar 

  20. Feng L, Ning J, Tian X, Wang C, Zhang L, Ma X, et al. Fluorescent probes for bioactive detection and imaging of phase II metabolic enzymes. Coord Chem Rev. 2019;399:213026.

    CAS  Google Scholar 

  21. Chen H, Tang Y, Lin W. Recent progress in the fluorescent probes for the specific imaging of small molecular weight thiols in living cells. TrAC Trends Anal Chem. 2016;76:166–81.

    CAS  Google Scholar 

  22. Chen W, Liu C, Peng B, Zhao Y, Pacheco A, Xian M. New fluorescent probes for sulfane sulfurs and the application in bioimaging. Chem Sci. 2013;4(7):2892–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  23. Chen W, Matsunaga T, Neill DL, Yang CT, Akaike T, Xian M. Rational Design of a Dual-Reactivity-Based Fluorescent Probe for visualizing intracellular HSNO. Angew Chem Int Ed. 2019;58(45):16067–70.

    CAS  Google Scholar 

  24. Chen W, Rosser EW, Matsunaga T, Pacheco A, Akaike T, Xian M. The development of fluorescent probes for visualizing intracellular hydrogen Polysulfides. Angew Chem Int Ed. 2015;54(47):13961–5.

    CAS  Google Scholar 

  25. Chen W, Xu S, Day JJ, Wang D, Xian M. A general strategy for development of near-infrared fluorescent probes for bioimaging. Angew Chem Int Ed. 2017;56(52):16611–5.

    CAS  Google Scholar 

  26. Lin VS, Chen W, Xian M, Chang CJ. Chemical probes for molecular imaging and detection of hydrogen sulfide and reactive sulfur species in biological systems. Chem Soc Rev. 2015;44(14):4596–618.

    CAS  PubMed  PubMed Central  Google Scholar 

  27. Chen W, Pacheco A, Takano Y, Day JJ, Hanaoka K, Xian M. A single fluorescent probe to visualize hydrogen sulfide and hydrogen Polysulfides with different fluorescence signals. Angew Chem Int Ed. 2016;55(34):9993–6.

    CAS  Google Scholar 

  28. Liu H, Tan Y, Dai Q, Liang H, Song J, Qu J, et al. A simple amide fluorescent sensor based on quinoline for selective and sensitive recognition of zinc(II) ions and bioimaging in living cells. Dyes Pigments. 2018;158:312–8.

    CAS  Google Scholar 

  29. Wang Q, Wen X, Fan Z. A Schiff base fluorescent chemsensor for the double detection of Al3+ and PPi through aggregation induced emission in environmental physiology. J Photochem Photobiol, A. 2018;358:92–9.

    CAS  Google Scholar 

  30. Zhao J, Jin G, Weng G, Li J, Zhu J, Zhao J. Recent advances in activatable fluorescence imaging probes for tumor imaging. Drug Discov Today. 2017;22(9):1367–74.

    CAS  PubMed  Google Scholar 

  31. Chen Z, Zhou H, Gu W, Liu T, Xie Z, Yang L, et al. A medium-controlled fluorescent enhancement probe for ag+ and Cu2+ derived from pyrene-containing schiff base. J Photochem Photobiol, A. 2019;379:5–10.

    CAS  Google Scholar 

  32. Gao C, Jin X, Yan X, An P, Zhang Y, Liu L, et al. A small molecular fluorescent sensor for highly selectivity of zinc ion. Sensors Actuators B Chem. 2013;176:775–81.

    CAS  Google Scholar 

  33. Kim DH, Im YS, Kim H, Kim C. Solvent-dependent selective fluorescence sensing of Al3+ and Zn2+ using a single Schiff base. Inorg Chem Commun. 2014;45:15–9.

    CAS  Google Scholar 

  34. Gupta VK, Singh AK, Kumawat LK. A turn-on fluorescent chemosensor for Zn2+ ions based on antipyrine schiff base. Sensors Actuators B Chem. 2014;204:507–14.

    CAS  Google Scholar 

  35. Sarkar D, Pramanik AK, Mondal TK. Coumarin based fluorescent ‘turn-on’ chemosensor for Zn2+: An experimental and theoretical study. J Lumin. 2014;146:480–5.

    CAS  Google Scholar 

  36. Gupta VK, Mergu N, Singh AK. Fluorescent chemosensors for Zn2+ ions based on flavonol derivatives. Sensors Actuators B Chem. 2014;202:674–82.

    CAS  Google Scholar 

  37. Wen X, Wang Q, Fan Z. Highly selective turn-on fluorogenic chemosensor for Zn(II) detection based on aggregation-induced emission. J Lumin. 2018;194:366–73.

    CAS  Google Scholar 

  38. Fan J, Peng X, Wu Y, Lu E, Hou J, Zhang H, et al. A new PET fluorescent sensor for Zn2+. J Lumin. 2005;114(2):125–30.

    CAS  Google Scholar 

  39. Atilgan S, Ozdemir T, Akkaya EU. A sensitive and selective ratiometric near IR fluorescent probe for zinc ions based on the distyryl− bodipy fluorophore. Org Lett. 2008;10(18):4065–7.

    CAS  PubMed  Google Scholar 

  40. Rananaware A, La DD, Bhosale SV. Solvophobic control aggregation-induced emission of tetraphenylethene-substituted naphthalene diimide via intramolecular charge transfer. RSC Adv. 2015;5(77):63130–4.

    CAS  Google Scholar 

  41. Razi SS, Ali R, Srivastava P, Misra A. A selective quinoline-derived fluorescent chemodosimeter to detect cyanide in aqueous medium. Tetrahedron Lett. 2014;55(5):1052–6.

    CAS  Google Scholar 

  42. Wen X, Wang Q, Fan Z. An active fluorescent probe based on aggregation-induced emission for intracellular bioimaging of Zn(2+) and tracking of interactions with single-stranded DNA. Anal Chim Acta. 2018;1013:79–86.

    CAS  PubMed  Google Scholar 

  43. Tang K-C, Chang M-J, Lin T-Y, Pan H-A, Fang T-C, Chen K-Y, et al. Fine tuning the energetics of excited-state intramolecular proton transfer (ESIPT): white light generation in a single ESIPT system. J Am Chem Soc. 2011;133(44):17738–45.

    CAS  PubMed  Google Scholar 

  44. Zhu S, Zhang J, Qiao C, Tang S, Li Y, Yuan W, et al. Strongly green-photoluminescent graphene quantum dots for bioimaging applications. Chem Commun. 2011;47(24):6858–60.

    CAS  Google Scholar 

  45. Tang Y, Huang Y, Lu L, Wang C, Sun T, Zhu J, et al. Synthesis of a new pyrene-devived fluorescent probe for the detection of Zn2+. Tetrahedron Lett. 2018;59(44):3916–22.

    CAS  Google Scholar 

  46. Tang A, Yin Y, Chen Z, Fan C, Liu G, Pu S. A multifunctional aggregation-induced emission (AIE)-active fluorescent chemosensor for detection of Zn2+ and Hg2+. Tetrahedron. 2019;75(36):130489.

    CAS  Google Scholar 

  47. Tayade K, Sahoo SK, Chopra S, Singh N, Bondhopadhyay B, Basu A, et al. A fluorescent “turn-on” sensor for the biologically active Zn2+ ion. Inorg Chim Acta. 2014;421:538–43.

    CAS  Google Scholar 

  48. Dutta K, Deka RC, Das DK. A new fluorescent and electrochemical Zn2+ ion sensor based on Schiff base derived from benzil and L-tryptophan. Spectrochim Acta, Part A. 2014;124:124–9.

    CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhefeng Fan.

Ethics declarations

Conflict of interest

The authors declare that they have no conflict of interest.

Statement concerning human and animal rights

In this study, only urine samples from laboratory personnel were used, and each participant signed informed consent. The samples were used solely for this study. No markers were used that contained personally identifying information of donors. Animals were not involved in this study.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Electronic supplementary material

ESM 1

(PDF 701 kb)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Yan, L., Wen, X. & Fan, Z. A large-Stokes-shift fluorescent probe for Zn2+ based on AIE, and application in live cell imaging. Anal Bioanal Chem 412, 1453–1463 (2020). https://doi.org/10.1007/s00216-019-02378-w

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00216-019-02378-w

Keywords

Navigation