Skip to main content
Log in

Investigation of cliff instability at Għajn Ħadid Tower (Selmun Promontory, Malta) by integrated passive seismic techniques

  • Original Article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

Għajn Ħadid Tower represents an important cultural heritage of Malta (Central Mediterranean Sea). This tower, built in 1658 on the Selmun Promontory on the northeast coast of the island, was severely damaged by the 1856 Crete earthquake (MW 7.7).

The area where the tower ruins stand is involved in a significant landslide process of lateral spreading. During 2015 and 2016, engineering geological surveys and passive seismic measurements were carried out to evaluate the main resonance frequencies of the promontory and monitor the gravity-induced instability process.

Seismic ambient noise measurements in the area of the tower show significant horizontal-to-vertical spectral ratio (HVSR) resonance peaks at 3.3–3.5 Hz characterized by linearity and polarization of the particle motion. These features are not present in the measurements carried out on the stable zone and can be related to the vibrational behaviour of the unstable rock block. Additionally, a shear wave velocity profile for the area was obtained by using a seismic array.

At the same time, two different approaches were tested for monitoring the landslide process: (i) a Seismic Navigating System (SNS) array detected 20 natural microseismic events caused by the ongoing landslide process; (ii) few-days continuous seismic noise measurements on the unstable rock block were used to carry out a preliminary study of the variation of specific parameters over time.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11

Similar content being viewed by others

References

  • Albarello D, Cesi C, Eulilli V, Guerrini F, Lunedei E, Paolucci E, Pileggi D, Puzzilli LM (2011) The contribution of the ambient vibration prospecting in seismic microzoning: an example from the area damaged by the April 6, 2009 L’Aquila (Italy) earthquake. Boll Geofis Teor Appl 52:513–538

    Google Scholar 

  • Amitrano D, Gaffet S, Malet J-P, Maquaire O (2007) Understanding mudslides through micro-seismic monitoring: the super-Sauze (south French Alps) case study. B Soc Geol Fr 178(2):149–157

    Google Scholar 

  • Amitrano D, Arattano M, Chiarle M, Mortara G, Occhiena C, Pirulli M, Scavia C (2010) Microseismic activity analysis for the study of the rupture mechanism in unstable rock masses. Nat Hazard Earth Syst Sci 10:831–841

    Google Scholar 

  • Arosio D, Longoni L, Papini M, Boccolari M, Zanzi L (2018) Analysis of microseismic signals collected on an unstable rock face in the Italian Prealps. Geophys J Int 213(1):475–488

    Google Scholar 

  • Bogoslovsky VA, Ogilvy AA (1977) Geophysical methods for the investigation of landslides. Geophysics 42(3):562–571

    Google Scholar 

  • Bottelin P, Jongmans D, Baillet L, Lebourg T, Hantz D, Lévy C, Le Roux O, Cadet H, Lorier L, Rouiller J-D, Turpin J, Darras L (2013a) Spectral analysis of prone-to-fall rock compartments using ambient vibrations. J Environ Eng Geophys 18(4):205–217

    Google Scholar 

  • Bottelin P, Lévy C, Baillet L, Jongmans D, Gueguen P (2013b) Modal and thermal analysis of les arches unstable rock column (Vercors massif, French Alps). Geophys J Int 194(2):849–858

    Google Scholar 

  • Bottelin P, Jongmans D, Daudon D, Mathy A, Helmstetter A, Bonilla-Sierra V, Cadet H, Amitrano D, Richefeu V, Lorier L, Baillet L, Villard P, Donzé F (2014) Seismic and mechanical studies of the artificially triggered rockfall at mount Néron (French Alps, December 2011). Nat Hazards Earth Syst Sci 14(12):3175–3193

    Google Scholar 

  • Bottelin P, Baillet L, Larose E, Jongmans D, Hantz D, Brenguier O, Cadet H, Helmstetter A (2017) Monitoring rock reinforcement works with ambient vibrations: La Bourne case study (Vercors, France). Eng Geol 226:136–145

    Google Scholar 

  • Bour M, Fouissac D, Dominique P, Martin C (1998) On the use of microtremor recordings in seismic microzonation. Soil Dyn Earthq Eng 17(7–8):465–474

    Google Scholar 

  • Burjánek J, Gassner-Stamm G, Poggi V, Moore JR, Fäh D (2010) Ambient vibration analysis of an unstable mountain slope. Geophys J Int 180(2):820–828

    Google Scholar 

  • Burjánek J, Moore JR, Yugsi Molina FX, Fäh D (2012) Instrumental evidence of normal mode rock slope vibration. Geophys J Int 188(2):559–569

    Google Scholar 

  • Burtin A, Bollinger L, Cattin R, Vergne J, Nábělek JL (2009) Spatiotemporal sequence of Himalayan debris flow from analysis of high-frequency seismic noise. J Geophys Res Earth 114(F4):F04009

    Google Scholar 

  • Canuti P, Casagli N, Catani F, Fanti R (2000) Hydrogeological hazard and risk in archaeological sites: some case studies in Italy. J Cult Herit 1(2):117–125

    Google Scholar 

  • Canuti P et al (2009a) Monitoring, geomorphological evolution and slope stability of Inca citadel of Machu Picchu: results from Italian INTERFRASI project. In: Sassa K, Canuti P (eds) Landslides - disaster risk reduction. Springer, Berlin-Heidelberg (DE), pp 249–257

    Google Scholar 

  • Canuti P, Margottini C, Fanti R, Bromhead EN (2009b) Cultural heritage and landslides: research for risk prevention and conservation. In: Sassa K, Canuti P (eds) Landslides - disaster risk reduction. Springer, Berlin-Heidelberg (DE), pp 401–433

    Google Scholar 

  • Castellaro S, Mulargia F (2009) The effect of velocity inversions on H/V. Pure Appl Geophys 166:567–592

    Google Scholar 

  • Colombero C, Baillet L, Comina C, Jongmans D, Vinciguerra S (2017) Characterization of the 3-D fracture setting of an unstable rock mass: from surface and seismic investigations to numerical modeling. J Geophys Res Sol Ea 122:6346–6366

    Google Scholar 

  • Colombero C, Baillet L, Comina C, Jongmans D, Larose E, Valentin J, Vinciguerra S (2018a) Integration of ambient seismic noise monitoring, displacement and meteorological measurements to infer the temperature-controlled long-term evolution of a complex prone-to-fall cliff. Geophys J Int 213(3):1876–1897

    Google Scholar 

  • Colombero C, Comina C, Vinciguerra S, Benson PM (2018b) Microseismicity of an unstable rock mass: from field monitoring to laboratory testing. J Geophys Res So Ea 123(2):1673–1693

    Google Scholar 

  • D’Amato Avanzi G, Marchetti D, Puccinelli A (2006) Cultural heritage and geological hazards: the case of the Calomini hermitage in Tuscany (Italy). Landslides 3:331

    Google Scholar 

  • D’Amico S, Panzera F, Martino S, Iannucci R, Paciello A, Lombardo G, Galea P, Farrugia D (2019) Ambient noise techniques to study near-surface in particular geological conditions: a brief review. In: Persico R, Piro S, Linford N (eds) Innovation in near-surface geophysics. Elsevier, Amsterdam (NL), pp 419–460

    Google Scholar 

  • Dammeier F, Moore JR, Haslinger F, Loew S (2011) Characterization of alpine rockslides using statistical analysis of seismic signals. J Geophys Res Earth 116(F40):F04024

    Google Scholar 

  • De Finis E, Gattinoni P, Scesi L (2017) Hydrogeological hazard in the UNESCO world heritage site of Castelseprio (northern Italy). Int J Herit Archit 1(2):256–266

    Google Scholar 

  • Del Gaudio V, Coccia S, Wasowski J, Gallipoli MR, Mucciarelli M (2008) Detection of directivity in seismic site response from microtremor spectral analysis. Nat Hazards Earth Syst Sci 8:751–762

    Google Scholar 

  • Del Gaudio V, Muscillo S, Wasowski J (2014) What we can learn about slope response to earthquakes from ambient noise analysis: an overview. Eng Geol 182:182–200

    Google Scholar 

  • Del Gaudio V, Luo Y, Wang Y, Wasowsky J (2018) Using ambient noise to characterise seismic slope response: the case of Qiaozhuang peri-urban hillslopes (Sichuan, China). Eng Geol 246:374–390

    Google Scholar 

  • Deparis J, Jongmans J, Cotton F, Bailler L, Thouvenot F, Hantz D (2008) Analysis of rock-fall and rock-fall avalanche seismograms in the French Alps. Bull Seism Soc Am 98(2):1781–1796

    Google Scholar 

  • Di Giacomo D, Gallipoli MR, Mucciarelli M, Parolai S, Richwalski SM (2005) Analysis and modeling of HVSR in the presence of a velocity inversion: the case of Venosa, Italy. Bull Seism Soc Am 95:2364–2372

    Google Scholar 

  • Fanti R, Gigli G, Lombardi L, Tapete D, Canuti P (2013) Terrestrial laser scanning for rockfall stability analysis in the cultural heritage site of Pitigliano (Italy). Landslides 10(4):409–420

    Google Scholar 

  • Farrugia D, Paolucci E, D’Amico S, Galea P (2016) Inversion of surface wave data for subsurface shear wave velocity profiles characterized by a thick buried low-velocity layer. Geophys J Int 206:1221–1231

    Google Scholar 

  • Farrugia D, Galea P, D'Amico S, Paolucci E (2017) Sensitivity of ground motion parameters to local shear-wave velocity models: the case of buried low-velocity layers. Soil Dyn Earthq Eng 100:196–205

    Google Scholar 

  • Fiorucci M, Iannucci R, Martino S, Paciello A (2016) Detection of nanoseismic events related to slope instabilities in the quarry district of Coreno Ausonio (Italy). Italian Journal of Engineering Geology and Environment 2:51–63

    Google Scholar 

  • Fiorucci M, Iannucci R, Lenti L, Martino S, Paciello A, Prestininzi A, Rivellino S (2017) Nanoseismic monitoring of gravity-induced slope instabilities for the risk management of an aqueduct infrastructure in central Apennines (Italy). Nat Hazards 86(S2):345–362

    Google Scholar 

  • Galea P (2007) Seismic history of the Maltese islands and considerations on seismic risk. Ann Geophys 50(6):725–740

    Google Scholar 

  • Galea P, D’Amico S, Farrugia D (2014) Dynamic characteristics of an active coastal spreading area using ambient noise measurements-Anchor Bay, Malta. Geophys J Int 199:1166–1175

    Google Scholar 

  • Gigli G, Frodella W, Mugnai F, Tapete D, Cigna F, Fanti R, Intrieri E, Lombardi L (2012) Instability mechanisms affecting cultural heritage sites in the Maltese archipelago. Nat Hazards Earth Syst Sci 12:1883–1903

    Google Scholar 

  • Got J-L, Mourot P, Grangeon J (2010) Pre-failure behaviour of an unstable limestone cliff from displacement and seismic data. Nat Hazards Earth Syst Sci 10:819–829

    Google Scholar 

  • Goudie A (2004) Encyclopedia of geomorphology. Routledge, London (UK)

    Google Scholar 

  • Hack R (2000) Geophysics for slope stability. Surv Geophys 21:423–448

    Google Scholar 

  • Häge M, Joswig M (2009a) Spatiotemporal distribution of aftershocks of the 2004 December 5 ML=5.4 Waldkirch (Germany) earthquake. Geophys J Int 178:1523–1532

    Google Scholar 

  • Häge M, Joswig M (2009b) Spatiotemporal characterization of interswarm period seismicity in the focal area Nový Kostel (West Bohemia/Vogtland) by a short-term microseismic study. Geophys J Int 179:1071–1079

    Google Scholar 

  • Häge M, Joswig M (2009c) Mapping local microseismicity using short-term tripartite small array installations. Case study: coy region (SE Spain). Tectonophys 471:225–231

    Google Scholar 

  • Häge M, Blascheck P, Joswig M (2013) EGS hydraulic stimulation monitoring by surface arrays - location accuracy and completeness magnitude: the Basel deep heat mining project case study. J Seismol 17:51–61

    Google Scholar 

  • Haghshenas E, Bard P-Y, Theodulidis N, SESAME WP04 Team (2008) Empirical evaluation of microtremor H/V spectral ratio. Bull Earthq Eng 6:75–108

  • Hakes C, Fiorucci M, Iannucci R, Martino S, Paciello A (2018) Nanoseismic monitoring for detection of rockfalls: experiments in quarry areas. Italian Journal of Engineering Geology and Environment 1:39–52

    Google Scholar 

  • Helmstetter A, Garambois S (2010) Seismic monitoring of Séchilienne rockslide (French Alps): analysis of seismic signals and their correlation with rainfalls. J Geophys Res Earth 115(F3):F03016

    Google Scholar 

  • Hibert C, Ekström G, Stark CP (2014) Dynamics of the Bingham canyon mine landslides from seismic signal analysis. Geophys Res Lett 41(13):4535–4541

    Google Scholar 

  • Hibert C, Ekström G, Stark CP (2017a) The relationship between bulk-mass momentum and short-period seismic radiation in catastrophic landslides. J Geophys Res Earth 122(5):1201–1215

    Google Scholar 

  • Hibert C, Malet J-P, Bourrier F, Provost F, Berger F, Bornemann P, Tardif P, Mermin E (2017b) Single-block rockfall dynamics inferred from seismic signal analysis. Earth Surf Dynam 5(2):283–292

    Google Scholar 

  • Hoek E, Bray JW (1981) Rock slope engineering. Taylor & Francis, London (UK)

    Google Scholar 

  • Hussain Y, Martinez-Carvajal H, Cárdenas-Soto M, Martino S (2019) Introductory review of potential applications of nanoseismic monitoring in seismic energy characterization. J Eng Res 7(2):65–80

    Google Scholar 

  • Hutchinson JN (1988) General Report: Morphological and geotechnical parameters of landslides in relation to geology and hydrogeology. In: Bonnard C (ed) Proceedings of Fifth International Symposium on Landslides. Balkema, Rotterdam (NL), vol 1, pp 3–35

  • Hyde HPT (1955) Geology of the Maltese islands. Lux Press, La Valletta (MT)

    Google Scholar 

  • Iannucci R, Martino S, Paciello A, D’Amico S (2017) Rock mass characterization coupled with seismic noise measurements to analyze the unstable cliff slope of the Selmun promontory (Malta). Procedia Eng 191:263–269

    Google Scholar 

  • Iannucci R, Martino S, Paciello A, D’Amico S, Galea P (2018) Engineering geological zonation of a complex landslide system through seismic ambient noise measurements at the Selmun promontory (Malta). Geophys J Int 213(2):1146–1161

    Google Scholar 

  • Imposa S, Grassi S, Fazio F, Rannisi G, Cino P (2017) Geophysical surveys to study a landslide body (northeastern Sicily). Nat Hazards 86(S2):327–343

    Google Scholar 

  • ISRM (1978) Suggested methods for the quantitative description of discontinuities in rock masses. Int J Rock Mech Min Sci Geomech Abstr 15:319–368

    Google Scholar 

  • Jongmans D, Garambois S (2007) Geophysical investigation of landslides: a review. Bulletin de la Société géologique de France 178(2):101–112

    Google Scholar 

  • Joswig M (1990) Pattern recognition for earthquake detection. Bull Seism Soc Am 80(1):170–186

    Google Scholar 

  • Joswig M (1995) Automated classification of local earthquake data in the BUG small array. Geophys J Int 120:262–286

    Google Scholar 

  • Joswig M (2008) Nanoseismic monitoring fills the gap between microseismic networks and passive seismic. First Break 26:121–128

    Google Scholar 

  • Kleinbrod U, Burjánek J, Fäh D (2019) Ambient vibration classification of unstable rock slopes: a systematic approach. Eng Geol 249:198–217

    Google Scholar 

  • Konno K, Ohmachi T (1998) Ground-motion characteristics estimated from spectral ratio between horizontal and vertical components of microtremor. Bull Seism Soc Am 88:228–241

    Google Scholar 

  • Lacroix P, Helmstetter A (2011) Location of seismic signals associated with microearthquakes and rockfalls on the Séchilienne landslide, French Alps. Bull Seism Soc Am 101(1):341–353

    Google Scholar 

  • Laskowicz I, Mrozek T (2015) Sacred historical heritage affected by landslides in the polish Flysch Carpathians. In: Lollino G, Giordan D, Marunteanu C, Christaras B, Yoshinori I, Margottini C (eds) Engineering geology for society and territory - volume 8. Springer, Cham (CH), pp 415–419

    Google Scholar 

  • Lenti L, Martino S, Paciello A, Prestininzi A, Rivellino S (2012) Microseismicity within a karstified rock mass due to cracks and collapses triggered by earthquakes and gravitational deformations. Nat Hazards 64:359–379

    Google Scholar 

  • Lévy C, Baillet L, Jongmans D, Mourot P, Hantz D (2010) Dynamic response of the Chamousset rock column (Western Alps, France). J Geophys Res Earth 115(F4):F04043

    Google Scholar 

  • Lévy C, Jongmans D, Baillet L (2011) Analysis of seismic signals recorded on a prone-to-fall rock column (Vercors massif, French Alps). Geophys J Int 186:296–310

    Google Scholar 

  • Lockner D (1993) The role of acoustic emission in the study of rock fracture. Int J Rock Mech Min Sci Geomech Abstr 30(7):883–899

    Google Scholar 

  • Lollino G, Audisio C (2006) UNESCO world heritage sites in Italy affected by geological problems, specifically landslide and flood hazard. Landslides 3(4):311–321

    Google Scholar 

  • Mantovani M, Devoto S, Forte E, Mocnik A, Pasuto A, Piacentini D, Soldati M (2013) A multidisciplinary approach for rock spreading and block sliding investigation in the north-western coast of Malta. Landslides 10(5):611–622

    Google Scholar 

  • Marinos P, Rondoyanni T (2005) The archaeological site of Delphi, Greece: a site vulnerable to earthquakes, Rockfalls and landslides. In: Sassa K, Fukuoka H, Wang F, Wang G (eds) Landslides. Springer, Berlin-Heidelberg (DE), pp 241–249

    Google Scholar 

  • Margottini C (2013) On the protection of cultural heritages from landslides. In: Margottini C, Canuti P, Sassa K (eds) Landslide science and practice. Springer, Berlin, Heidelberg (DE), pp 415–426

    Google Scholar 

  • Margottini C, Spizzichino D (2014) The management of cultural heritage in sites prone to natural hazard. Mem Descr Carta Geol d’It XCVI:415–430

  • Maurer H, Spillmann T, Heincke B, Hauck C, Loew S, Springman SM, Green AG (2010) Geophysical characterization of slope instabilities. First Break 28(8):53–61

    Google Scholar 

  • McCann DM, Forster A (1990) Reconnaissance geophysical methods in landslide investigations. Eng Geol 29:59–78

    Google Scholar 

  • Moore JR, Gischig V, Burjánek J, Loew S, Fäh D (2011) Site effects in unstable rock slopes: dynamic behavior of the Randa instability (Switzerland). Bull Seism Soc Am 101(6):3110–3116

    Google Scholar 

  • Nakamura Y (1989) A method for dynamic characteristics estimation of subsurface using microtremor on the ground surface. Quarterly Report of Railway Technical Research Institute (RTRI) 30(1):25–33

    Google Scholar 

  • Nogoshi M, Igarashi T (1970) On the propagation characteristics of microtremors. J Seism Soc Japan 23:264–280 (in Japanese with English abstract)

    Google Scholar 

  • Nogoshi M, Igarashi T (1971) On the amplitude characteristics of microtremors. J Seism Soc Japan 24:24–40 (in Japanese with English abstract)

    Google Scholar 

  • Ohori M, Nobata A, Wakamatsu K (2002) A comparison of ESAC and FK methods of estimating phase velocity using arbitrarily shaped microtremor arrays. Bull Seism Soc Am 92:2323–2332

    Google Scholar 

  • Panzera F, D’Amico S, Lotteri A, Galea P, Lombardo G (2012) Seismic site response of unstable steep slope using noise measurements: the case study of Xemxija Bay area, Malta. Nat Hazards Earth Syst Sci 12(11):3421–3431

    Google Scholar 

  • Panzera F, D’Amico S, Galea P, Lombardo G, Gallipoli MR, Pace S (2013) Geophysical measurements for site response investigation: preliminary results on the island of Malta. Boll Geofis Teor Appl 54:111–128

    Google Scholar 

  • Pappalardo G, Imposa S, Mineo S, Grassi S (2016) Evaluation of the stability of a rock cliff by means of geophysical and geomechanical surveys in a cultural heritage site (South-Eastern Sicily). Ital J Geosci 135(2):308–323

    Google Scholar 

  • Parolai S, Picozzi M, Richwalski SM, Milkereit C (2005) Joint inversion of phase velocity dispersion and H/V ratio curves from seismic noise recordings using a genetic algorithm, considering higher modes. Geophys Res Lett 32:L01303

    Google Scholar 

  • Parolai S, Richwalski SM, Milkereit C, Fäh D (2006) S-wave velocity profiles for earthquake engineering purposes for the Cologne area (Germany). Bull Earthq Eng 4:65–94

    Google Scholar 

  • Pazzi V, Tanteri L, Bicocchi G, D’Ambrosio M, Caselli A, Fanti R (2017) H/V measurements as an effective tool for the reliable detection of landslide slip surfaces: case studies of Castagnola (La Spezia, Italy) and Roccalbegna (Grosseto, Italy). Phys Chem Earth 98:136–153

    Google Scholar 

  • Pedley M (2011) The Calabrian stage, Pleistocene highstand in Malta: a new marker for unravelling the late Neogene and quaternary history of the islands. J Geol Soc 168(4):913–926

    Google Scholar 

  • Pedley HM, House MR, Waugh B (1976) The geology of Malta and Gozo. Proc Geol Assoc 87(3):325–341

    Google Scholar 

  • Pedley HM, House MR, Waugh B (1978) The geology of the Pelagian block: the Maltese islands. In: Nairn AEM, Kanes WH, Stehli FG (eds) The ocean basins and margins. Springer, Boston (US-MA), pp 417–433

    Google Scholar 

  • Pedley M, Clarke M, Galea P (2002) Limestone isles in a Crystal Sea: the geology of the Maltese islands. Publishers Enterprises Group Ltd, San Gwann (MT)

    Google Scholar 

  • Petley D (2012) Global patterns of loss of life from landslides. Geology 40:927–930

    Google Scholar 

  • Picozzi M, Albarello D (2007) Combining genetic and linearized algorithms for a two-step joint inversion of Rayleigh wave dispersion and H/V spectral ratio curves. Geophys J Int 169:189–200

    Google Scholar 

  • Pischiutta M, Villani F, D’Amico S, Vassallo M, Cara F, Di Naccio D, Farrugia D, Di Giulio G, Amoroso S, Cantore P, Mercuri A, Famiani D, Galea P, Akinci A, Rovelli A (2017) Results from shallow geophysical investigations in the northwestern sector of the island of Malta. Phys Chem Earth 98:41–48

    Google Scholar 

  • Senfaute G, Duperret A, Lawrence JA (2009) Micro-seismic precursory cracks prior to rock-fall on coastal chalk cliffs: a case study at Mesnil-Val, Normandie, NW France. Nat Hazards Earth Syst Sci 9:1625–1641

    Google Scholar 

  • Sick B, Walter M, Joswig M (2014) Visual event screening of continuous seismic data by supersonograms. Pure Appl Geophys 171:549–559

    Google Scholar 

  • Spillmann T, Maurer H, Green AG, Heincke B, Willenberg H, Husen S (2007) Microseismic investigation of an unstable mountain slope in the Swiss Alps. J Geophys Res So Ea 112(B7):B07301

    Google Scholar 

  • Suriñach E, Vilajosana I, Khazaradze G, Biescas B, Furdada G, Vilaplana JM (2005) Seismic detection and characterization of landslides and other mass movements. Nat Hazards Earth Syst Sci 5(6):791–798

    Google Scholar 

  • Themistocleous K et al (2016) The protection of cultural heritage sites from geo-hazards: the PROTHEGO project. In: Ioannides M et al (eds) Digital heritage. Progress in cultural heritage: documentation, preservation, and protection. EuroMed 2016, Lecture notes in computer science, vol, vol 10059. Springer, Cham (CH), pp 91–98

    Google Scholar 

  • Tonnellier A, Helmstetter A, Malet J-P, Schmittbuhl J, Corsini A, Joswig M (2013) Seismic monitoring of soft-rock landslides: the super-Sauze and Valoria case studies. Geophys J Int 193(3):1515–1536

    Google Scholar 

  • Valentin J, Capron A, Jongmans D, Baillet L, Bottelin P, Donze F, Larose E, Mangeney A (2017) The dynamic response of prone-to-fall columns to ambient vibrations: comparison between measurements and numerical modelling. Geophys J Int 208(2):1058–1076

    Google Scholar 

  • Varnes DJ (1978) Slope movement types and processes. In: Schuster RL, Krizek RJ (eds) Landslides analysis and control, special report 176. National Academy Press, Washington DC (US-DC), pp 11–33

    Google Scholar 

  • Vella A, Galea P, D’Amico S (2013) Site frequency response characterisation of the Maltese islands based on ambient noise H/V ratios. Eng Geol 163:89–100

    Google Scholar 

  • Vidale JE (1986) Complex polarisation analysis of particle motion. Bull Seism Soc Am 76:1393–1405

    Google Scholar 

  • Walter M, Schwaderer U, Joswig M (2012a) Seismic monitoring of precursory fracture signals from a destructive rockfall in the Vorarlberg Alps, Austria. Nat Hazards Earth Syst Sci 12:3545–3555

    Google Scholar 

  • Walter M, Arnhardt C, Joswig M (2012b) Seismic monitoring of rockfalls, slide quakes and fissure development at the super-Sauze mudslide, French Alps. Eng Geol 128:12–22

    Google Scholar 

  • Wust-Bloch GH (2010) Characterizing and locating very weak (−2.2 ≥ ML ≥ −3.4) induced seismicity in unstable sandstone cliffs by nanoseismic monitoring. Pure Appl Geophys 167:153–167

    Google Scholar 

  • Wust-Bloch GH, Joswig M (2006) Pre-collapse identification of sinkholes in unconsolidated media at Dead Sea area by ‘nanoseismic monitoring’ (graphical jackknife location of weak sources by few, low-SNR records). Geophys J Int 167:1220–1232

    Google Scholar 

  • Yalcinkaya E, Alp H, Ozel O, Gorgun E, Martino S, Lenti L, Bourdeau C, Bigarre P, Coccia S (2016) Near-surface geophysical methods for investigating the Buyukcekmece landslide in Istanbul, Turkey. J Appl Geophys 134:23–35

    Google Scholar 

Download references

Acknowledgements

The authors wish to thank Jan Burjánek for the use of the polarization analysis codes and Institute for Geophysics of University of Stuttgart and Manfred Joswig for the use of the NanoseismicSuite software.

This research is part of the Ph.D. research of Roberto Iannucci. It was carried out in the framework of the project “Rock failures in cliff slopes: from back- to forward-analysis of processes through monitoring and multi-modelling approaches” (Sapienza University of Rome - Year 2016, P.I. Prof. Salvatore Martino). This study was also partially supported by the project NEWS (“Nearshore hazard monitoring and Early Warning System”) part-financed by the European Union under the Italia- Malta Cross- Border Cooperation Programmes, 2014–2020.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Iannucci.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Iannucci, R., Martino, S., Paciello, A. et al. Investigation of cliff instability at Għajn Ħadid Tower (Selmun Promontory, Malta) by integrated passive seismic techniques. J Seismol 24, 897–916 (2020). https://doi.org/10.1007/s10950-019-09898-z

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-019-09898-z

Keywords

Navigation