Skip to main content

Advertisement

Log in

The initial high-energy phenomena of earthquake sources in fluid-saturated environments

  • Original Article
  • Published:
Journal of Seismology Aims and scope Submit manuscript

Abstract

Experimental data pertaining to weak faults requires construction of microscopic models of the earthquake sources. This study proposes a new high-energy mechanism of transformation of potential energy of strata, saturated with free or bounded fluids, into a kinetic energy of motion of rocks. The proposed approach relies within the framework of classic statistical theory. The high-energy phenomena at a nanometer level are generated by self-consistent molecular fields acting on individual particles. The analysis is carried out using the Bogolyubov-Born-Green-Kirkwood-Yvon equations for the particle group distribution functions. We have investigated the number of high-energy phenomena: (1) the emission of atoms and molecules with high energies from the abruptly opened surface of a condensed system; (2) the implosion of convergent streams of high-energy particles, accompanied by a phenomena of their shock dissociation and ionization, with a subsequent formation of partially ionized plasma; and (3) the recombination processes inside a plasma leading to a formation of molecules with high kinetic energies. The initiation of an earthquake occurs due to an abrupt opening of a cavity in the fluid-saturated medium. At certain thermodynamic conditions, the work function of atoms and molecules from the surface of the system may take negative values. As a result, the emission of molecules of fluids from the cavity walls will generate the high-speed streams of molecules. The emitted flux of molecules leads to the phenomena of implosion, impact dissociation, and ionization of the molecules. This plasma state of the medium is sufficient for an explosion. The explosion initiates a self-supporting chain of consequent explosions in a plane of the tectonic fault. As an example, we have considered the Bridgman explosion of serpentinite.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6

Similar content being viewed by others

References

  • Adushkin VV, Spivak AA (1994) Geologic characterization and mechanics of underground nuclear explosions. Defense Nuclear Agency

  • Adushkin VV, Spivak AA (2004) Changes in properties of rock massifs due to underground nuclear explosions. Combust Explos Shock Waves 40:624–634

    Article  Google Scholar 

  • Andersen HC, Weeks JD, Chandler D (1971) Relationship between the hard-sphere fluid and fluids with realistic repulsive forces. Phys Rev A 4:1597–1607

    Article  Google Scholar 

  • Aslanov SK, Kaim Ya S, Kaim SD (2007) On the mechanism of explosive formation of nanoparticles. Nanosyst Nanomater Nanotechnol 5:811–831 (in Russian)

    Google Scholar 

  • Bazarov IP, Nikolaev PN (1981) Integral equations in the theory of crystals. Sov Phys J 24:175–177. https://doi.org/10.1007/BF00895368

    Article  Google Scholar 

  • Bazarov IP, Nikolaev PN (2014) Theory of many-particle systems. American Institute of Physics

  • Becken M, Ritter O (2012). Magnetotelluric studies at the San Andreas Fault Zone: implications for the role of fluids. Surv Geophys 33: 65–105. DOI 10.1007/s10712-011-9144-0.

    Article  Google Scholar 

  • Bogoliubov NN (1960) Problems of dynamic theory in statistical physics. Technical Information Service

  • Bouchon M, Karabulut H (2008) The aftershock signature of supershear earthquakes. Science 320:1323–1325. https://doi.org/10.1126/science.1155030

    Article  Google Scholar 

  • Bouchon M, Vallée M (2003) Observation of long supershear rupture during the magnitude 8.1 Kunlunshan Earthquake. Science 301:824–826

    Article  Google Scholar 

  • Bridgman PW (1935) Effect of high shearing stress combined with high hydrostatic pressure. Phys Rev 48:825–847

    Article  Google Scholar 

  • Brodsky EE, Mori J, Fulton PM (2010) Drilling into faults quickly after earthquakes. EOS Trans Am Geophys Union 91:237–244

    Article  Google Scholar 

  • Cesca S, Grigoli F, Heimann S, González A, Buforn E, Maghsoudi S, Blanch E, Dahm T (2014) The 2013 September–October seismic sequence offshore Spain: a case of seismicity triggered by gas injection? Geophys J Int 198:941–953

    Article  Google Scholar 

  • Croxton CA (1974) Liquid state physics. A statistical mechanical introduction. Cambridge University Press

  • Doser DI, Kanamori H (1986) Depth of seismicity in the Imperial Valley region (1977–1983) and its relationship to heat flow, crustal structure, and the October 15, 1979, earthquake. J Geophys Res 91:675–688

    Article  Google Scholar 

  • Dourmashkin P (2016) Classical mechanics: MIT 8.01 Course Notes Fall 2016. http://web.mit.edu/8.01t/www/coursedocs/current/guide.htm

  • Downs B (2017) Geos 306, Mineralogy, Fall 2017: http://www.geo.arizona.edu/xtal/geos306/geotherm.htm

  • Enikolopian NS (1988) Detonacia—twerdotelnaia chimicheskaia reakcia. Dokl Akad Nauk SSSR 302:630–634

    Google Scholar 

  • Fisher IZ (1964) Statistical theory of liquids. The University of Chicago Press

  • Fried DG, Ely JF, Ingham H (1989) Thermophysical properties of methane. J Phys Chem Ref Data 18:583–798

    Article  Google Scholar 

  • Frolich C (2006) Deep earthquakes. Cambridge University Press

  • Fulton PM, Saffer DM (2009) Potential role of mantle-derived fluids in weakening the San Andreas Fault. J Geophys Res 114:B07408. https://doi.org/10.1029/2008JB00608

    Article  Google Scholar 

  • Fulton PM, Brodsky EE, Kano Y, Mori J, Chester F, Ishikawa T, Harris RN, Lin W, Eguchi N, Toczko S, Expedition 343, 343T, and KR13-08 Scientists (2013) Low coseismic friction on the Tohoku-Oki fault determined from temperature measurements. Science 342:1214–1217

    Article  Google Scholar 

  • Green HW II (2005) New light on deep earthquakes. Sci Am 15:97–105

    Google Scholar 

  • Green HW II, Houston H (1995) The mechanics of deep earthquakes. Annu Rev Earth Planet Sci 23:169–213. https://doi.org/10.1146/annurev.ea.23.050195.001125

    Article  Google Scholar 

  • Hirschfelder JO, Curtiss CF, Bird RB (1954) Molecular theory of gases and liquids. Wiley

  • Holdsworth RE, van Diggelen EWE, Spiers CJ, de Bresser JHP, Walker RJ, Bowen L (2011) Fault rocks from the SAFOD core samples: implications for weakening at shallow depths along the San Andreas Fault, California. J Struct Geol 33:132–144

    Article  Google Scholar 

  • Hong-Sen X, Wen-Ge Z, Yu-When L, Jie G, Zu-ming X (2000) Elastic characteristics of serpentinite dehydration at high pressure and its significance. Chin J Geophys 43:851–856. https://doi.org/10.1002/cjg2.101

    Article  Google Scholar 

  • Janssen C, Wirth R, Reinicke A, Rybacki E, Naumann R, Wenk H-R, Dresen G (2011) Nanoscale porosity in SAFOD core samples (San Andreas Fault). Earth Planet Sci Lett 301:179–189

    Article  Google Scholar 

  • Jung H, Green II HW, Dobrzhinetskaya LF (2004) Intermediate-depth earthquake faulting by dehydration embrittlement with negative volume change. Nature 428:545–549. https://doi.org/10.1038/nature02412

    Article  Google Scholar 

  • Kaim YS (2004) Calculation of atom work functions from liquid into gas within the molecular-kinetic theory. Ukr J Phys 49:174–181

    Google Scholar 

  • Kaim SS (2006) Microscopic theory of the atom work function from the binary mixture of simple liquids. 1. General results. arXiv:cond-mat/0608384 [cond-mat.stat-mech]

  • Kaim YS, Kaim SD (2008) Stability criteria, atomization and non-thermal processes in liquids. Ultrason Sonochem 15:700–708. https://doi.org/10.1016/j.ultsonch.2008.01.009

    Article  Google Scholar 

  • Kaim SS, Kaim SD, Rojek R (2009) Mechanism of ‘hot points’ generation in fronts of detonation waves in condensed energetic materials. Nanosyst Nanomater Nanotechnol 7:1201–1226 (in Ukrainian)

    Google Scholar 

  • Kanamori H (1994) Mechanics of earthquakes. Annu Rev Earth Planet Sci 22:207–237

    Article  Google Scholar 

  • Kanamori H (2006) The radiated energy of 2004 Sumatra Andaman Earthquake. In: Earthquakes: radiated energy and the physics of faulting. Geophysical Monograph Series 170: 59–68.

  • Kanamori H, Brodsky EE (2001) The physics of earthquakes. Phys Today 54:34–40

    Article  Google Scholar 

  • Kanamori H, Brodsky EE (2004) The physics of earthquakes. Rep Prog Phys 67:1429–1496

    Article  Google Scholar 

  • Kawamura H, Hatano T, Kato N, Biswas S, Chakrabarti B (2012) Statistical physics of fracture, friction and earthquake. Rev Mod Phys 84:839–884. https://doi.org/10.1103/RevModPhys.84.839

    Article  Google Scholar 

  • Kаіm SD (2012) Mechanism of shock wave metallization of simple liquids. Phys Met Adv Technol 34:619–641

    Google Scholar 

  • Lachenbruch AH, Sass JH (1980) Heat flow and energetics of the San Andreas fault zone. J Geophys Res Solid Earth 85:6185–6222. https://doi.org/10.1029/JB085iB11p06185

    Article  Google Scholar 

  • Marakushev AA, Bobrov AV (2005) Metamorficheskaya petrologiya. MGU (in Russian)

  • Marone C, Saffer DM (2007) Fault friction and the upper transition from seismic to aseismic faulting. In: Dixon T, Moore J (eds) The Seismogenic Zone of subduction thrust faults. Columbia University Press, pp 346–369 Retrieved from http://www.jstor.org/stable/10.7312/dixo13866.15

  • Marone C, Scholz CH (1988) The depth of seismic faulting and the upper transition from stable to unstable slip regimes. Geophys Res Lett 15:621–624

    Article  Google Scholar 

  • Moore DE, Rymer MJ (2007) Talc-bearing serpentinite and the creeping section of the San Andreas fault. Nature 448:795–797. https://doi.org/10.1038/nature06064

    Article  Google Scholar 

  • Morrow CA, Lockner DA (2005) Some recent laboratory measurements of fault zone permeability. AGU Fall Meeting, Abstracts 12/2005

  • Morrow CA, Lockner DA, Moore DE, Hickman S (2014) Deep permeability of the San Andreas Fault from San Andreas Fault Observatory at Depth (SAFOD) core samples. J Struct Geol 64:99–114. https://doi.org/10.1016/j.jsg.2013.09.009

    Article  Google Scholar 

  • NCEDC (2016), Northern California Earthquake Data Center. UC Berkeley Seismological Laboratory. Dataset. https://doi.org/10.7932/NCEDC

  • Nestola F, Smyth JR (2015) Diamonds and water in the deep Earth: a new scenario. Int Geol Rev. https://doi.org/10.1080/00206814.2015.1056758

    Article  Google Scholar 

  • Ono S, Kondo S (1960) Molecular theory of surface tension in liquids. Handbuch der Physik, Bd. 10, Structure der Flussigkeiten. Springer

  • Pshezhetskii S (1968) Mechanism radiacionno-chimicheskich reakcii, Chimiia. (in Russian).

  • Reid H (1910) The Mechanics of the Earthquake, The California Earthquake of April 18, 1906, Report of the State Investigation Commission, Vol.2, Carnegie Institution of Washington, pp 16–28

  • Sadovskii M (2004) Izbrannye trudy. Geofizika i fizika wzrywa. Nauka (166–170) (In Russian)

  • Sato T, Kanamori H (1999) Beginning of earthquakes modeled with the Griffith’s fracture сriterion. Bulletin of the Seismological Society of America 89:80–93

  • Sato H, Uematsu M, Watanabe K, Saul A, Wagner W (1988) New international skeleton tables for the thermodynamic properties of ordinary water substance. J Phys Chem Ref Data 17:1439–1540

    Article  Google Scholar 

  • Schmandt B, Jacobsen SD, Becker TW, Liu Z, Dueker KG (2014) Dehydration melting at the top of the lower mantle. Science 344:1265–1268. https://doi.org/10.1126/science.1253358

    Article  Google Scholar 

  • Setzmann U, Wagner W (1991) A new equation of state and tables of thermodynamic properties for methane covering the range from the melting line to 625 K at pressures up to 1000 Mpa. J Phys Chem Ref Data 20:1061–1165. https://doi.org/10.1063/1.555898

    Article  Google Scholar 

  • Sornette D (1999) Earthquakes: from chemical alteration to mechanical rupture. Phys Rep 313:237–291

    Article  Google Scholar 

  • Sornette D (2001) Mechanochemistry: a hypothesis for shallow earthquakes. In: Teisseyre R, Majewski E (eds) Earthquake thermodynamics and phase transformations in the Earth’s interior. Academic Press, pp 329–360

  • Sornette D, Sornette A (2000) Acoustic fluidization for earthquakes? Bull Seismol Soc Am 90:781–785. https://doi.org/10.1785/0119990040

    Article  Google Scholar 

  • Span R, Wagner W (1996) A new equation of state for carbon dioxide covering the fluid region from the triple point temperature to 1100 K at pressures up to 800 Mpa. J Phys Chem Ref Data 25:1509–1596

    Article  Google Scholar 

  • Thomas S-M, Jacobsen SD, Bina CR, Reichart P, Moser M, Hauri EH, Koch-Müller M, Smyth JR, Dollinger G (2015) Quantification of water in hydrous ringwoodite: frontiers in Earth science. Earth Planet Mater 2. Article 38. https://doi.org/10.3389/feart.2014.00038

  • Udías A, Madariaga R, Buforn E (2014) Source mechanism of earthquakes: theory and practice. Cambridge University Press

  • Vedeneev VI, Gurvich LV, Kondrat’ev VN (1966) Bond energies: ionization potentials and electron affinities. Edward Arnold

  • Verlet L, Weis JJ (1972) Equilibrium theory of simple liquids. Phys Rev A 5:939–952. https://doi.org/10.1103/PhysRevA.5

    Article  Google Scholar 

  • Weeks JD, Chandler D, Andersen HC (1971) Perturbation theory of the thermodynamic properties of simple liquids. J Chem Phys 55:5422–5423

    Article  Google Scholar 

  • Wiersberg T, Erzinger J (2011) Chemical and isotope compositions of drilling mud gas from the San Andreas Fault Observatory at Depth (SAFOD) boreholes: Implications on gas migration and the permeability structure of the San Andreas Fault Chemical Geology 284, pp 148–159. https://doi.org/10.1016/j.chemgeo.2011.02.016

    Article  Google Scholar 

  • Wilson B, Dewers T, Reches Z, Brune J (2005) Particle size and energetics of gouge from earthquake rupture zones. Nature 434:749–752

    Article  Google Scholar 

  • Ye L, Lay T, Kanamori H, Koper KD (2013) Energy release of the 2013 Mw 8.3 Sea of Okhotsk earthquake and deep slab stress heterogeneity. Science 341:1380–1384. https://doi.org/10.1126/science.1242032

    Article  Google Scholar 

  • Zhan Z, Helmberger DV, Kanamori H, Shearer PM (2014) Supershear rupture in a Mw 6.7 aftershock of the 2013 Sea of Okhotsk earthquake. Science 345:204–207. https://doi.org/10.1126/science.1252717

    Article  Google Scholar 

  • Zoback MD, Zoback ML, Mount VS, Suppe J, Eaton JP, Healy JH, Oppenheimer D, Reasenberg P, Jones L, Raleigh CB, Wong IG, Scotti O, Wentworth C (1987) New evidence on the state of stress of the San Andreas Fault System. Science 238:1105–1111

    Article  Google Scholar 

  • Zoback M, Hickman S, Ellsworth W, the SAFOD Science Team (2011) Scientific drilling into the San Andreas fault zone—an overview of SAFOD’s first five years. Sci Drill 11:14–28. https://doi.org/10.2204/iodp.sd.11.02.2011

    Article  Google Scholar 

Download references

Acknowledgments

Metadata or data products for this study were accessed through the Northern California Earthquake Data Center (NCEDC), doi:10.7932/NCEDC. The author is expressing his utmost gratitude to the reviewers of the paper for their keen, thorough, and useful comments and recommendations.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sergii D. Kaim.

Additional information

Publisher’s note

Springer Nature remains neutral with regard to jurisdictional claims in published maps and institutional affiliations.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kaim, S.D. The initial high-energy phenomena of earthquake sources in fluid-saturated environments. J Seismol 24, 133–147 (2020). https://doi.org/10.1007/s10950-019-09893-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10950-019-09893-4

Keywords

Navigation