Skip to main content

Advertisement

Log in

The Ability of Barotropic Models to Simulate Historical Mean Sea Level Changes from Coastal Tide Gauge Data

  • Published:
Surveys in Geophysics Aims and scope Submit manuscript

Abstract

The nature of mean sea level variation over the global coastal ocean is considered based on 219 historical tide gauge records and three barotropic ocean circulation models forced by reanalysis surface air pressure and wind stress. The consistency of the models and their ability to reproduce the data are considered on nonseasonal timescales (seasonal cycles and linear trends removed) from bimonthly to multidecadal over 1900–2010. Models consistently simulate stronger sea level variability at higher latitude, higher frequency, between winters, and over broad shallow shelves and semi-enclosed marginal seas; standard deviations in modeled monthly sea level grow from 1–2 cm on average at low latitude (0°–30°) to 5–10 cm at high latitude (60°–90°), with larger values simulated over some shelf areas (e.g., North Sea). Models are more consistent over narrow shelf regions adjacent to deep basins and less consistent along the broad shallow continental shelf. On monthly timescales, discrepancies between models arise mostly from differences in model configuration (e.g., fine vs. coarse horizontal resolution), whereas model configuration and surface forcing (i.e., choice of atmospheric reanalysis) contribute comparably to model differences on annual timescales. Model solutions become more uncertain at earlier times (e.g., prior to 1950). The models show more skill explaining variance in tide gauge data at higher latitude, higher frequency, between winters, and over broad shallow shelves and within semi-enclosed marginal seas; at middle and high latitudes (poleward of 45°), model sea level solutions on average explain 30–50% of the monthly variance and 35–70% of the variance from one winter to the next in the tide gauge data records. Statistically significant relationships between the model solutions and observational data persist on long decadal periods. The relative skill of individual models is sensitive to region and timescale, such that no one model considered here consistently performs better than the others in all cases. Results suggest that barotropic models are useful for reducing noise in tide gauge records for studies of sea level rise and motivate additional model comparison studies in the context of sea level extremes.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10
Fig. 11
Fig. 12
Fig. 13
Fig. 14
Fig. 15
Fig. 16
Fig. 17
Fig. 18
Fig. 19
Fig. 20

Similar content being viewed by others

References

  • Adcroft A, Hill C, Marshall J (1997) Representation of topography by shaved cells in a height coordinate ocean model. Mon Weather Rev 125:2293–2315

    Article  Google Scholar 

  • Andres M, Gawarkiewicz GG, Toole JM (2013) Interannual sea level variability in the western North Atlantic: regional forcing and remote response. Geophys Res Lett 40:5915–5919. https://doi.org/10.1002/2013GL058013

    Article  Google Scholar 

  • Bingham RJ, Hughes CW (2008) The relationship between sea-level and bottom pressure variability in an eddy permitting ocean model. Geophys Res Lett 35:L03602

    Article  Google Scholar 

  • Bos MS, Williams SDP, Araújo IB, Bastos L (2014) The effect of temporal correlated noise on the sea level rate and acceleration uncertainty. Geophys J Int 196:1423–1430. https://doi.org/10.1093/gji/ggt481

    Article  Google Scholar 

  • Calafat FM, Chambers DP (2013) Quantifying recent acceleration in sea level unrelated to internal climate variability. Geophys Res Lett 40:3661–3666. https://doi.org/10.1002/grl.50731

    Article  Google Scholar 

  • Calafat FM, Chambers DP, Tsimplis MN (2012) Mechanisms of decadal sea level variability in the eastern North Atlantic and the Mediterranean Sea. J Geophys Res 117:C09022. https://doi.org/10.1029/2012JC008285

    Article  Google Scholar 

  • Calafat FM, Chambers DP, Tsimplis MN (2013) Inter-annual to decadal sea-level variability in the coastal zones of the Norwegian and Siberian Seas: the role of atmospheric forcing. J Geophys Res Oceans 117:1287–1301. https://doi.org/10.1002/jgrc.20106

    Article  Google Scholar 

  • Calafat FM, Chambers DP, Tsimplis MN (2014a) On the ability of global sea level reconstructions to determine trends and variability. J Geophys Res Oceans 119:1572–1592. https://doi.org/10.1002/2013JC009298

    Article  Google Scholar 

  • Calafat FM, Avgoustoglou E, Jordà G, Flocas H, Zodiatis G, Tsimplis MN, Kouroutzoglou J (2014b) The ability of a barotropic model to simulate sea level extremes of meteorological origin in the Mediterranean Sea, including those caused by explosive cyclones. J Geophys Res Oceans 119:7840–7853

    Article  Google Scholar 

  • Carrère L, Lyard F (2003) Modeling the barotropic response of the global ocean to atmospheric wind and pressure forcing: comparisons with observations. Geophys Res Lett 30(6):1275. https://doi.org/10.1029/2002GL016473

    Article  Google Scholar 

  • Chepurin GA, Carton JA, Leuliette E (2014) Sea level in ocean reanalyses and tide gauges. J Geophys Res Oceans 119:147–155. https://doi.org/10.1002/2013JC009365

    Article  Google Scholar 

  • Clarke AJ, Liu X (1994) Interannual sea level in the northern and eastern Indian Ocean. J Phys Oceanogr 24:1224–1235

    Article  Google Scholar 

  • Compo GP, Whitaker JS, Sardeshmukh PD, Matsui N, Allan RJ, Yin X, Gleason BE, Vose RS, Rutledge G, Bessemoulin P, Brönnimann S, Brunet M, Crouthamel RI, Grant AN, Groisman PY, Jones PD, Kruk MC, Kruger AC, Marshall GJ, Maugeri M, Mok HY, Nordli Ø, Ross TF, Trigo RM, Wang XL, Woodruff SD, Worley SJ (2011) The twentieth century reanalysis project. Q J R Meteorol Soc 137:1–28. https://doi.org/10.1002/qj.776

    Article  Google Scholar 

  • Csanady GT (1982) Circulation in the coastal ocean. D. Reidel Publishing Compeny, Dordrecht, p 279

    Book  Google Scholar 

  • Dangendorf S, Mudersbach C, Wahl T, Jensen J (2013) Characteristics of intra-, inter-annual and decadal sea-level variability and the role of meteorological forcing: the long record of Cuxhaven. Ocean Dyn 63:209–224. https://doi.org/10.1007/s10236-013-0598-0

    Article  Google Scholar 

  • Dangendorf S, Rybski D, Mudersbach C, Müller A, Kaufmann E, Zorita E, Jensen J (2014a) Evidence for long-term memory in sea level. Geophys Res Lett 41:5530–5537. https://doi.org/10.1002/2014GL060538

    Article  Google Scholar 

  • Dangendorf S, Müller-Navarra S, Jensen J, Schenk F, Wahl T, Weisse R (2014b) North Sea storminess from a novel storm surge record since AD 1843. J Climate 27:3582–3595

    Article  Google Scholar 

  • Dangendorf S, Marcos M, Müller M, Zorita E, Riva R, Berk K, Jense J (2015) Detecting anthropogenic footprints in sea level rise. Nat Commun 6:7849. https://doi.org/10.1038/ncomms8849

    Article  Google Scholar 

  • Dangendorf S, Marcos M, Wöppelmann G, Conrad CP, Frederikse T, Riva R (2017) Reassessment of 20th century global mean sea level rise. Proc Natl Acad Sci USA 114(23):5946–5951. https://doi.org/10.1073/pnas.1616007114

    Article  Google Scholar 

  • Featherstone WE, Penna NT, Filmer MS, Williams SDP (2015) Nonlinear subsidence at Fremantle, a long-recording tide gauge in the Southern Hemisphere. Geophys Res Lett 120:7004–7014. https://doi.org/10.1002/2015JC011295

    Article  Google Scholar 

  • Feng M, Li Y, Meyers G (2004) Multidecadal variations of Fremantle sea level: footprint of climate variability in the tropical Pacific. Geophys Res Lett 31:L16302. https://doi.org/10.1029/2004GL019947

    Article  Google Scholar 

  • Field CR, Bayard TS, Gjerdrum C, Hill JM, Meiman S, Elphick CS (2017) High-resolution tide projections reveal extinction threshold in response to sea-level rise. Glob Change Biol 23:2058–2070. https://doi.org/10.1111/gcb.13519

    Article  Google Scholar 

  • Forget G, Campin J-M, Heimbach P, Hill CN, Ponte RM, Wunsch C (2015) ECCO version 4: an integrated framework for non-linear inverse modeling and global ocean state estimation. Geosci Model Dev 8:3071–3104. https://doi.org/10.5194/gmd-8-3071-2015

    Article  Google Scholar 

  • Forsyth J, Gawarkiewicz G, Andres M, Chen K (2018) The interannual variability of the breakdown of fall stratification on the New Jersey shelf. J Geophys Res Oceans. https://doi.org/10.1029/2018JC014049

    Article  Google Scholar 

  • Frankignoul C, Müller P, Zorita E (1997) A simple model of the decadal response of the ocean to stochastic wind forcing. J Phys Oceanogr 27:1533–1546

    Article  Google Scholar 

  • Frederikse T, Simon K, Katsman CA, Riva R (2017) The sea-level budget along the Northwest Atlantic coast: GIA, mass changes, and large-scale ocean dynamics. J Geophys Res Oceans 122:5486–5501. https://doi.org/10.1002/2017JC012699

    Article  Google Scholar 

  • Fukumori I, Wang O, Llovel W, Fenty I, Forget G (2015) A near-uniform fluctuation of ocean bottom pressure and sea level across the deep ocean basins of the Arctic Ocean and the Nordic Seas. Prog Oceanogr 134:152–172

    Article  Google Scholar 

  • Gill AE (1982) Atmosphere-ocean dynamics. Academic Press, New York, p 662

    Google Scholar 

  • Gill AE, Niiler PP (1973) The theory of the seasonal variability in the ocean. Deep See Res 20:141–177

    Google Scholar 

  • Gille ST (2004) How nonlinearities in the equation of state of seawater can confound estimates of steric sea level change. J Geophys Res 109:C03005. https://doi.org/10.1029/2003JC002012

    Article  Google Scholar 

  • Gomis D, Tsimplis MN, Martín-Míguez B, Ratsimandresy AW, García-Lafuente J, Josey SA (2006) Mediterranean Sea level and barotropic flow through the Strait of Gibraltar for the period 1958–2001 and reconstructed since 1659. J Geophys Res 111:C11005. https://doi.org/10.1029/2005JC003186

    Article  Google Scholar 

  • Gomis D, Ruiz S, Sotillo MG, Álvarez-Fanjul E, Terradas J (2008) Low frequency Mediterranean sea level variability: the contribution of atmospheric pressure and wind. Glob Planet Change 63:215–229

    Article  Google Scholar 

  • Gonneea ME, Mulligan AE, Charette MA (2013) Climate-driven sea level anomalies modulate coastal groundwater dynamics and discharge. Geophys Res Lett 40:2701–2706. https://doi.org/10.1002/grl.50192

    Article  Google Scholar 

  • Greatbatch RJ, Lu Y, de Young B (1996) Application of a barotropic model to North Atlantic synoptic sea level variability. J Mar Res 54:451–469

    Article  Google Scholar 

  • Haigh ID, Wahl T, Rohling EJ, Price RM, Pattiaratchi CB, Calafat FM, Dangendorf S (2014) Timescales for detecting a significant acceleration in sea level rise. Nat Commun 5:3635. https://doi.org/10.1038/ncomms4635

    Article  Google Scholar 

  • Hay CC, Morrow E, Kopp RE, Mitrovica JX (2015) Probabilistic reanalysis of twentieth-century sea-level rise. Nature 517:481–484

    Article  Google Scholar 

  • Holgate SJ, Matthews A, Woodworth PL, Rickards LJ, Tamisiea ME, Bradshaw E, Foden PR, Gordon KM, Jevrejeva S, Pugh J (2013) New data systems and products at the permanent service for mean sea level. J Coast Res 29(3):493–504

    Google Scholar 

  • Holton JR (1992) An introduction to dynamic meteorology. Academic Press, San Diego, p 507

    Google Scholar 

  • Horton BP, Kopp RE, Garner AJ, Hay CC, Khan NS, Roy K, Shaw TA (2018) Mapping sea-level change in time, space, and probability. Annu Rev Environ Resour. https://doi.org/10.1146/annurev-environ-102017-025826

    Article  Google Scholar 

  • Jordà G, Marbà N, Duarte CM (2012a) Mediterranean seagrass vulnerable to regional climate warming. Nat Clim Change 2:821–824

    Article  Google Scholar 

  • Jordà G, Gomis D, Álvarez-Fanjul E, Somot S (2012b) Atmospheric contribution to Mediterranean and nearby Atlantic sea level variability under different climate change scenarios. Glob Planet Change 80–81:198–214

    Article  Google Scholar 

  • Karegar MA, Dixon TH, Engelhart SE (2016) Subsidence along the Atlantic Coast of North America: insights from GPS and late Holocene relative sea level data. Geophys Res Lett 43:3126–3133. https://doi.org/10.1002/2016GL068015

    Article  Google Scholar 

  • Kenigson JS, Han W, Rajagopalan B, Yanto Jasinski M (2018) Decadal shift of NAO-linked interannual sea level variability along the U.S. Northeast Coast J Clim 31:4981–4989

    Google Scholar 

  • Kundu PK, Cohen IM (2004) Fluid mechanics, 3rd edn. Elsevier Academic Press, Amsterdam, p 759

    Google Scholar 

  • Kopp RE, Hay CC, Little CM, Mitrovica JX (2015) Geographic variability of sea-level change. Curr Clim Change Rep 1(3):192–204

    Article  Google Scholar 

  • Krueger O, Schenk F, Feser F, Weisse R (2013) Inconsistencies between long-term trends in storminess derived from the 20CR reanalysis and observations. J Clim 26:868–874

    Article  Google Scholar 

  • Laloyaux P, Balmaseda M, Dee D, Mogensen K, Janssen P (2016) A coupled data assimilation system for climate reanalysis. Q J R Meteorol Soc 142:65–78. https://doi.org/10.1002/qj.2629

    Article  Google Scholar 

  • Marcos M, Tsimplis MN (2007) Forcing of coastal sea level rise patterns in the North Atlantic and the Mediterranean Sea. Geophys Res Lett 34:L18604. https://doi.org/10.1029/2007GL030641

    Article  Google Scholar 

  • Marcos M, Tsimplis MN (2008) Coastal sea level trends in Southern Europe. Geophys J Int 175:70–82. https://doi.org/10.1111/j.1365-246X.2008.03892.x

    Article  Google Scholar 

  • Marcos M, Calafat FM, Berihuete Á, Dangendorf S (2015) Long-term variations in global sea level extremes. J Geophys Res Oceans 120:8115–8134. https://doi.org/10.1002/2015JC011173

    Article  Google Scholar 

  • Marshall J, Adcroft A, Hill C, Perelman L, Heisey C (1997) A finite-volume, incompressible Navier Stokes model for studies of the ocean on parallel computers. J Geophys Res 102(C3):5753–5766. https://doi.org/10.1029/96JC02775

    Article  Google Scholar 

  • Merrifield MA, Thompson PR (2018) Interdecadal sea level variations in the Pacific: distinctions between the tropics and extratropics. Geophys Res Lett. https://doi.org/10.1029/2018GL077666

    Article  Google Scholar 

  • Milne GA, Gehrels WR, Hughes CW, Tamisiea MA (2009) Identifying the causes of sea-level change. Nat Geosci 2:471–478

    Article  Google Scholar 

  • Pascual A, Marcos M, Gomis D (2008) Comparing the sea level response to pressure and wind forcing of two barotropic models: validation with tide gauge and altimetry data. J Geophys Res 113:C07011. https://doi.org/10.1029/2007JC004459

    Article  Google Scholar 

  • Pedlosky J (1987) Geophysical fluid dynamics, 2nd edn. Springer, New York, p 710

    Book  Google Scholar 

  • Peixoto JP, Oort AH (1992) Physics of Climate. American Institute of Physics, New York, p 520

    Google Scholar 

  • Philander SGH (1978) Forced oceanic waves. Rev Geophys 16(1):15–46

    Article  Google Scholar 

  • Piecuch CG, Ponte RM (2014) Mechanisms of global-mean steric sea level change. J Clim 27:824–834

    Article  Google Scholar 

  • Piecuch CG, Ponte RM (2015a) Inverted barometer contributions to recent sea level changes along the northeast coast of North America. Geophys Res Lett 42:5918–5925. https://doi.org/10.1002/2015GL064580

    Article  Google Scholar 

  • Piecuch CG, Ponte RM (2015b) A wind-driven nonseasonal barotropic fluctuation of the Canadian inland seas. Ocean Sci 11:175–185. https://doi.org/10.5194/os-11-175-2015

    Article  Google Scholar 

  • Piecuch CG, Fukumori I, Ponte RM, Wang O (2015) Vertical structure of ocean pressure variations with application to satellite-gravimetric observations. J Atmos Ocean Technol 32:603–613

    Article  Google Scholar 

  • Piecuch CG, Dangendorf S, Ponte RM, Marcos M (2016a) Annual sea level changes on the North American Northeast Coast: influence of local winds and barotropic motions. J Clim 29:4801–4816

    Article  Google Scholar 

  • Piecuch CG, Thompson PR, Donohue KA (2016b) Air pressure effects on sea level changes during the twentieth century. J Geophys Res Oceans 121:7917–7930. https://doi.org/10.1002/2016JC012131

    Article  Google Scholar 

  • Poli P, Hersbach H, Tan D, Dee D, Thépaut J-N, Simmons A, Peubey C, Laloyaux P, Komori T, Berrisford P, Dragani R, Trémolet Y, Hólm E, Bonavita M, Isaksen L, Fisher M (2013) The data assimilation system and initial performance evaluation of the ECMWF pilot reanalysis of the 20th-century assimilating surface observations only (ERA-20C). ERA report series 14

  • Ponte RM (1992) The sea level response of a stratified ocean to barometric pressure forcing. J Phys Oceanogr 22:109–113

    Article  Google Scholar 

  • Ponte RM (1993) Variability in a homogeneous global ocean forced by barometric pressure. Dyn Atmos Oceans 18:209–234

    Article  Google Scholar 

  • Ponte RM (1994) Understanding the relation between wind- and pressure-driven sea level variability. J Geophys Res 99(C4):8033–8039

    Article  Google Scholar 

  • Ponte RM (2006) Low-frequency sea level variability and the inverted barometer effect. J Atmos Ocean Technol 23:619–629

    Article  Google Scholar 

  • Ponte RM, Dorandeu J (2003) Uncertainties in ECMWF surface pressure fields over the ocean in relation to sea level analysis and modeling. J Atmos Ocean Technol 20:301–307

    Article  Google Scholar 

  • Ponte RM, Quinn KJ, Piecuch CG (2018) Accounting for gravitational attraction and loading effects from land ice on absolute sea level. J Atmos Ocean Technol 35:405–410

    Article  Google Scholar 

  • Proshutinsky AY, Johnson MA (1997) Two circulation regimes of the wind-driven Arctic Ocean. J Geophys Res 102(C6):12493–12514

    Article  Google Scholar 

  • Proshutinsky A, Pavlov V, Bourke RH (2001) Sea level rise in the Arctic Ocean. Geophys Res Lett 28(11):2237–2240

    Article  Google Scholar 

  • Proshutinsky A, Ashik IM, Dvorkin EN, Häkkinen S, Krishfield RA, Peltier WR (2004) Secular sea level change in the Russian sector of the Arctic Ocean. J Geophys Res 109:C03042. https://doi.org/10.1029/2003JC002007

    Article  Google Scholar 

  • Proshutinksy A, Ashik I, Häkkinen S, Hunke E, Krishfield R, Maltrud M, Maslowski W, Zhang J (2007) Sea level variability in the Arctic Ocean from AOMIP models. J Geophys Res 112:C04S08. https://doi.org/10.1029/2006JC003916

    Article  Google Scholar 

  • Permanent Service for Mean Sea Level (PSMSL) (2018) Tide gauge data. http://www.psmsl.org/data/obtaining/. Retrieved 5 Mar 2018

  • Qiu B, Chen S (2006) Decadal variability in the large-scale sea surface height field of the South Pacific Ocean: observations and causes. J Phys Oceanogr 36:1751–1762

    Article  Google Scholar 

  • Qiu B, Chen S (2010) Interannual-to-decadal variability in the bifurcation of the North Equatorial Current off the Philippines. J Phys Oceanogr 40:2525–2538

    Article  Google Scholar 

  • Qiu B, Chen S (2012) Multidecadal sea level and gyre circulation variability in the northwestern tropical Pacific Ocean. J Phys Oceanogr 42:193–206

    Article  Google Scholar 

  • Richter K, Nilson JEØ, Drange H (2012) Contributions to sea level variability along the Norwegian coast for 1960–2010. J Geophys Res 117:C05038. https://doi.org/10.1029/2011JC007826

    Article  Google Scholar 

  • Royston S, Watson CS, Legrésy B, King MA, Church JA, Bos MS (2018) Sea-level trend uncertainty with Pacific climatic variability and temporally-correlated noise. J Geophys Res Oceans 123:1978–1993. https://doi.org/10.1002/2017JC013655

    Article  Google Scholar 

  • Sandstrom H (1980) On the wind-induced sea level changes on the Scotian shelf. J Geophys Res 85(C1):461–468

    Article  Google Scholar 

  • Sasaki YN, Minobe S, Miura Y (2014) Decadal sea-level variability along the coast of Japan in response to ocean circulation changes. J Geophys Res 119:266–275. https://doi.org/10.1002/2013JC009327

    Article  Google Scholar 

  • Sasaki YN, Washizu R, Yasuda T, Minobe S (2017) Sea level variability around Japan during the twentieth century simulated by a regional ocean model. J Clim 30:5585–5595

    Article  Google Scholar 

  • Stammer D, Hüttemann S (2008) Response of regional sea level to atmospheric pressure loading in a climate change scenario. J Clim 21:2093–2101

    Article  Google Scholar 

  • Stammer D, Cazenave A, Ponte RM, Tamisiea ME (2013) Causes for contemporary regional sea level changes. Annu Rev Mar Sci 5:21–46

    Article  Google Scholar 

  • Stammer D, Ray RD, Andersen OB, Arbic BK, Bosch W, Carrère L, Cheng Y, Chinn DS, Dushaw BD, Egbert GD, Erofeeva SY, Fok HS, Green JAM, Griffiths S, King MA, Lapin V, Lemoine FG, Luthcke SB, Lyard F, Morison J, Müller M, Padman L, Richman JG, Shriver JF, Shum CK, Taguchi E, Yi Y (2014) Accuracy assessment of global barotropic ocean tide models. Rev Geophys 52:243–282. https://doi.org/10.1002/2014RG000450

    Article  Google Scholar 

  • Sturges W, Douglas BC (2011) Wind effects on estimates of sea level rise. J Geophys Res 116:C06008. https://doi.org/10.1029/2010JC006492

    Article  Google Scholar 

  • Sündermann J, Pohlmann T (2011) A brief analysis of North Sea physics. Oceanologia 53(3):663–689

    Article  Google Scholar 

  • Theuerkeuf EJ, Rodriguez AB, Fegley SR, Luettich RA (2014) Sea level anomalies exacerbate beach erosion. Geophys Res Lett 41:5139–5147. https://doi.org/10.1002/2014GL060544

    Article  Google Scholar 

  • Thompson PR, Mitchum GT (2014) Coherent sea level variability on the North Atlantic western boundary. J Geophys Res 119:5676–5689. https://doi.org/10.1002/2014JC009999

    Article  Google Scholar 

  • Thompson PR, Mitchum GT, Vonesch C, Li J (2013) Variability of winter storminess in the eastern United States during the twentieth century from tide gauges. J Clim 26:9713–9726

    Article  Google Scholar 

  • Thompson PR, Merrifield MA, Wells JR, Chang CM (2014) Wind-driven coastal sea level variability in the northeast Pacific. J Clim 27:4733–4751

    Article  Google Scholar 

  • Thompson PR, Hamlington BD, Landerer FW, Adhikari S (2016) Are long tide gauge records in the wrong place to measure global mean sea level rise? Geophys Res Lett 43:10403–10411. https://doi.org/10.1002/2016GL070552

    Article  Google Scholar 

  • Thorne K, MacDonald G, Guntenspergen G, Ambrose R, Buffington K, Dugger B, Freeman C, Janousek C, Brown L, Rosencranz J, Holmquist J, Smol J, Hargan K, Takekawa J (2018) U.S. Pacific coastal wetland resilience and vulnerability to sea-level rise. Sci Adv 4:eaao3270

    Article  Google Scholar 

  • Tsimplis MN, Álvarez-Fanjul E, Gomis D, Fenoglio-Marc L, Pérez B (2005) Mediterranean Sea level trends: atmospheric pressure and wind contribution. Geophys Res Lett 32:L20602. https://doi.org/10.1029/2005GL023867

    Article  Google Scholar 

  • Vinogradova NT, Ponte RM, Stammer D (2007) Relation between sea level and bottom pressure and the vertical dependence of oceanic variability. Geophys Res Lett 34:L03608

    Article  Google Scholar 

  • Willebrand J, Philander SGH, Pacanowski RC (1980) The oceanic response to large-scale atmospheric disturbances. J Phys Oceanogr 10:411–429

    Article  Google Scholar 

  • Woodworth PL, Pouvreau N, Wöppelmann G (2010) The gyre-scale circulation of the North Atlantic and sea level at Brest. Ocean Sci 6:185–190

    Article  Google Scholar 

  • Woodworth PL, Morales Maqueda MÁ, Roussenov VM, Williams RG, Hughes CW (2014) Mean sea-level variability along the northeast American Atlantic coast and the roles of the wind and the overturning circulation. J Geophys Res Oceans 119:8916–8935. https://doi.org/10.1002/2014JC010520

    Article  Google Scholar 

  • Woodworth PL, Morales Maqueda MÁ, Gehrels WR, Roussenov VM, Williams RG, Hughes CW (2017) Variations in the difference between mean sea level measured either side of Cape Hatteras and their relation to the North Atlantic Oscillation. Clim Dyn 49(7–8):2451–2469

    Article  Google Scholar 

  • Woodworth PL, Melet A, Marcos M, Ray RD, Wöppelmann G, Sasaki YN, Cirano M, Hibbert A, Huthnance JM, Montserrat S, Merrifield MA (2019) Forcing factors affecting sea level changes at the coast. Surv Geophys. https://doi.org/10.1007/s10712-019-09531-1

    Article  Google Scholar 

  • Wunsch CW, Stammer D (1997) Atmospheric loading and the oceanic ”inverted barometer” effect. Rev Geophys 35(1):79–107

    Article  Google Scholar 

Download references

Acknowledgements

This work was supported by National Science Foundation awards OCE-1558966 and OCE-1834739 as well as the J. Lamar Worzel Assistant Scientist Fund and the Penzance Endowed Fund in Support of Assistant Scientists at the Woods Hole Oceanographic Institution. This paper is an outcome of the ISSI Workshop on, “Understanding the Relationship between Coastal Sea Level and Large-Scale Ocean Circulation,” held on 5–9 March 2018 in Bern, Switzerland. Helpful comments from Magdalena Andres and an anonymous reviewer are acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to C. G. Piecuch.

Appendix: Scaling of the Relative Influences of Barotropic and Baroclinic Effects on \(\zeta\) Variability

Appendix: Scaling of the Relative Influences of Barotropic and Baroclinic Effects on \(\zeta\) Variability

Following past works (Gill and Niiler 1973; Willebrand et al. 1980; Frankignoul et al. 1997), we perform a scaling analysis to establish the basic controls on the relative contributions of barotropic and baroclinic processes on \(\zeta\) variability. The words “barotropic” and “baroclinic” have various usages and meanings in physical oceanography and geophysical fluid dynamics (Holton 1992; Pedlosky 1987). Here, we use these words in a similar sense to the separation of variables and normal vertical modes in a continuously stratified fluid (Gill 1982; Kundu and Cohen 2004). We define the barotropic component of a depth-dependent variable as the depth-averaged value, and the baroclinic component at a given depth as the deviation from the depth average. In the case of \(\zeta\), which has no explicit depth dependence, we define the barotropic component as the scaled depth-averaged hydrostatic pressure p (cf. Gill 1982),

$$\begin{aligned} \left\langle \zeta \right\rangle \,{\mathop{=}\limits ^{.}}\, \frac{1}{\rho _0 g} \frac{1}{\zeta +H} \int _{-H}^\zeta p(z) \ \mathrm{d}z, \end{aligned}$$
(11)

where H is ocean depth, \(\rho _0\) a constant reference density, and g gravitational acceleration. The baroclinic \(\zeta\) component is defined as the difference between total and barotropic components,

$$\zeta ^{\prime\prime} \,\,{\mathop{=}\limits ^{.}}\,\, \zeta - \langle \zeta \rangle .$$
(12)

Usage of angled brackets and double primes to denote the barotropic and baroclinic components follows Peixoto and Oort (1992). It can be shown that, by applying the hydrostatic equation,

$$\begin{aligned} \frac{\text{d}p}{\text{d}z} = - \rho g, \end{aligned}$$
(13)

\(\zeta ^{\prime\prime}\) can be rewritten in terms of a double integral of ocean density \(\rho\),

$$\begin{aligned} \zeta ^{\prime\prime} = -\frac{1}{\rho _0} \frac{1}{\zeta +H} \int _{-H}^\zeta \int _z^0 \rho (z') \ \mathrm{d}z' \ \mathrm{d}z. \end{aligned}$$
(14)

See Piecuch et al. (2015) for more details on how (14) can be derived from (13) and (12).

To compare the magnitudes of \(\left\langle \zeta \right\rangle\) and \(\zeta ^{\prime\prime}\) variations, we consider basic ocean dynamics. Given the timescales of interest to this study (monthly to decadal), we generally expect an equilibrium (time-independent) barotropic response to surface atmospheric forcing, while we anticipate a transient (time-dependent) baroclinic adjustment. For simplicity, we suppose that the only surface forcing is by a variable wind stress \(\varvec{\tau }\). (Indeed, the above expressions for \(\left\langle \zeta \right\rangle\) and \(\zeta ^{\prime\prime}\) neglect any surface loading by barometric pressure.) Thus, to scale the p integrand in Eq. (11), we assume that the equilibrium barotropic adjustment takes the form of a Sverdrup balance,

$$\begin{aligned} {\mathbf J} \left( p, \frac{H}{f} \right) = - \nabla \times \left( \frac{\varvec{\tau }}{f} \right) , \end{aligned}$$
(15)

where \({\mathbf J}\) is the Jacobian operator, \(\nabla \times\) is the vertical component of the curl operator, and f is the Coriolis parameter. Eq. (15) represents a balance between vertical stretching of the water column by the curl of \(\varvec{\tau }\) and advection of the water column across contours of ambient potential vorticity by geostrophic flows (Pedlosky 1987). Combining Eqs. (11) and (15), we find that \(\left\langle \zeta \right\rangle\) is of order,

$$\begin{aligned} \mathcal {O} \left( \left\langle \zeta \right\rangle \right) \sim \frac{\varvec{\tau } f}{\rho _0 g H \beta }, \end{aligned}$$
(16)

where \(\beta\) is the meridional derivative of f.

To scale the \(\rho\) integrand in Eq. (14), we assume the transient baroclinic response is such that density changes arise solely due to heaving of the mean stratification by an anomalous velocity w,

$$\begin{aligned} \frac{\partial \rho }{\partial t} = \rho _0 \frac{N^2}{g} w, \end{aligned}$$
(17)

where \(N^2\) is the square of the buoyancy frequency. For simplicity, we assume a vertical structure for w such that it is equal to the Ekman pumping velocity,

$$\begin{aligned} w_{\text{ek}} = \nabla \times \left( \frac{\varvec{\tau }}{\rho _0 f} \right) , \end{aligned}$$
(18)

within some shallow upper layer of vertical thickness \(\delta\), and zero everywhere below that depth. Combining Eqs. (14), (17), and (18), we find that \(\zeta ^{\prime\prime}\) scales as

$$\begin{aligned} \mathcal {O} \left( \zeta ^{\prime\prime} \right) \sim \frac{N^2 \delta \varvec{\tau }}{\rho _0 \omega g L f}, \end{aligned}$$
(19)

where \(\omega\) is the angular frequency of the density variation and L is a representative length scale of the surface forcing. Thus, the ratio of the barotropic to the baroclinic \(\zeta\) term is on the order of

$$\begin{aligned} \frac{\mathcal {O} \left( \left\langle \zeta \right\rangle \right) }{\mathcal {O} \left( \zeta ^{\prime\prime} \right) } \sim \frac{\omega f^2 L}{N^2 \delta H \beta }. \end{aligned}$$
(20)

That is, barotropic response becomes increasingly important relative to baroclinic adjustment for progressively higher latitude (\(f^2/\beta\) increases in magnitude with latitude), higher frequency, larger spatial scale, weaker stratification, and shallower water column thickness. These simple arguments are borne out and corroborated by more realistic ocean general circulation model experiments (Vinogradova et al. 2007; Bingham and Hughes 2008).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Piecuch, C.G., Calafat, F.M., Dangendorf, S. et al. The Ability of Barotropic Models to Simulate Historical Mean Sea Level Changes from Coastal Tide Gauge Data. Surv Geophys 40, 1399–1435 (2019). https://doi.org/10.1007/s10712-019-09537-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s10712-019-09537-9

Keywords

Navigation