Skip to main content
Log in

Determination of the local tidal parameters for the Borowiec station using Satellite Laser Ranging data

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The values of regional tidal parameters h2, l2 associated with the tidal variations of ground stations were estimated for the Polish Satellite Laser Ranging (SLR) station Borowiec using SLR data. The study is based on satellite observations taken by the global network of ground stations during the period from January 1, 1999 until January 1, 2019 for monthly orbital arcs of the satellites LAGEOS-1 and LAGEOS-2. The adjusted regional values for h2 equalling 0.7308 ± 0.0008 and l2 equalling 0.1226 ± 0.0003 are discussed and compared with the nominal values of h2 and l2 given in the the International Earth Rotation and Reference Systems Service (IERS) standards and with other estimations of these parameters. Furthermore, the influence of the tidal parameters changes on estimation of the Borowiec station coordinates in the ITRF2014 reference frame was investigated. The analysis was carried out in two variants. The first one consisted in the determination of the Borowiec station coordinates with the use of the nominal values of the tidal parameters: h2 = 0.6078 and l2 = 0.0847 (IERS recommended values). In the second one, the Borowiec station coordinates were determined using the local tidal parameters estimated in this paper (h2 = 0.7308 ± 0.0008 and l2 = 0.1226 ± 0.0003). The differences between X, Y ,Z for Variant 1 and Variant 2 are −3.5, 3.3 and 4.2 mm, respectively.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Alothman A.O. and Schillak S., 2014. Recent results for the Arabian Plate motion using Satellite Laser Ranging observations of Riyadh SLR station to LAGEOS-1 and LAGEOS-2 satellites. Arab. J. Sci. Eng., 39, 217–226.

    Article  Google Scholar 

  • Altamimi Z., Rebischung P., Métivier L. and Collilieux X., 2016. ITRF2014: A new release of the International Terrestrial Reference Frame modeling nonlinear station motions. J. Geoph. Res.-Solid Earth, 121, 6109–6131.

    Article  Google Scholar 

  • Bizouard Ch., Lambert S., Gattano C., Becker O. and Richard J.Y., 2018. The IERS EOP 14C04 solution for Earth orientation parameters consistent with ITRF 2014. J. Geodesy, 93, 621–633.

    Article  Google Scholar 

  • Folkner W.M., Charlot P., Finger M.H., Williams J.G., Sovers O.J., Newhall X.X. and Standish E.M. Jr., 1994. Determination of the extragalactic-planetary frame tie from joint analysis of radio interferometric and lunar laser ranging measurements. Astron. Astrophys., 287, 279–289.

    Google Scholar 

  • Golonka J., Ślączka A. and Picha F., 2003. Geodynamic evolution of the orogen: the West Carpathians and Ouchaitas case study. Ann. Soc. Geol. Pol., 75, 145–167.

    Google Scholar 

  • Grad M., Polkowski M. and Ostafczuk S.R., 2016. High-resolution 3D seismic model of the crustal and uppermost mantle structure in Poland. Tectonophysics, 666, 188–210.

    Article  Google Scholar 

  • Haas R., Gueguen E., Scherneck H.G., Nothnagel A. and Campbell J., 2000. Crustal motion results derived from observations in the European geodetic VLBI network. Earth Planets Space, 52, 759–764.

    Article  Google Scholar 

  • Herring T.A. and Dong D., 1994. Measurement of diurnal and semidiurnal rotational variations and tidal parameters of Earth. J. Geophys. Res., 99, 18051–18071.

    Article  Google Scholar 

  • Jagoda M., 2019. Influence of use of different tidal parameters h 2, l 2 values on determination of SLR stations coordinates. Stud. Geophys. Geod., 63, 71–82.

    Article  Google Scholar 

  • Jagoda M. and Rutkowska M., 2016. Estimation of the Love numbers: k 2, k 3 using SLR data of the LAGEOS1, LAGEOS2, STELLA and STARLETTE satellites. Acta Geod. Geophys., 51, 493–504.

    Article  Google Scholar 

  • Jagoda M., Rutkowska M. and Kraszewska K., 2017. The evaluation of time variability of tidal parameters h and l using SLR technique. Acta Geodyn. Geomater., 14, 153–158.

    Google Scholar 

  • Jagoda M., Rutkowska M., Kraszewska K. and Suchocki C., 2018. Time changes of the potential Love tidal parameters k 2 and k 3. Stud. Geophys. Geod., 62, 586–595.

    Article  Google Scholar 

  • Krásná H., Böhm J. and Schuh H., 2013. Tidal Love and Shida numbers estimated by geodetic VLBI. J. Geodyn., 70, 21–27.

    Article  Google Scholar 

  • Kucharski D., Kirchner G., Schillak S. and Cristea E., 2007. Spin determination of LAGEOS-1 from kHz laser observations. Adv. Space Res., 39, 1576–1581.

    Article  Google Scholar 

  • Kucharski D., Kirchner G., Koidl F. and Cristea E., 2009. 10 years of LAGEOS-1 and 15 years of LAGEOS-2 spin period determination from SLR data. Adv. Space Res., 43, 1926–1930.

    Article  Google Scholar 

  • Lejba P., Suchodolski T., Michałek P., Bartoszak J., Schillak S. and Zapaśnik S., 2018. First laser measurements to space debris in Poland. Adv. Space Res., 61, 2609–2616.

    Article  Google Scholar 

  • Majorowicz J., Čermák V., Šafanda J., Krzywiec P., Wróblewska M., Guterech A. and Grad M., 2003. Heat flow models acroos the Trans-European Suture Zone in the area of the POLONAISE’97 seismic experiment. Phys. Chem. Earth, 28, 375–391.

    Article  Google Scholar 

  • McCarthy J.J., Rowton, S. Moore, D. Pavlis, D.E. Luthcke S.B. and Tsaoussi L.S., 1993. GEODYN II System Operation Manual, 1–5. STX System Corp., Lanham, MD.

    Google Scholar 

  • Mendes V.B. and Pavlis E.C., 2004. High-accuracy zenith delay prediction at optical wavelengths. Geophys. Res. Lett., 31, L14602.

    Article  Google Scholar 

  • Petecki Z., Polechońska O., Cieśla E. and Wybraniec S., 2003. Magnetic Map of Poland. Scale 1:500,000. Polish Geological Institute, Warsaw, Poland.

    Google Scholar 

  • Petit G. and Luzum B., 2010. IERS Conventions. IERS Technical Note No. 36. Verlag des Bundesamts fur Kartographie und Geodasie, Frankfurt an Main, Germany.

    Google Scholar 

  • Pearlman M.R., Degnan J.J. and Bosworth J.M., 2002. The International Laser Ranging Service. Adv. Space Res., 30, 135–143.

    Article  Google Scholar 

  • Pearlman M.R., Arnold D., Davis M., Barlier F., Biancale R., Vasiliev V., Ciufolini I., Paolozzi A., Pavlis E.C., Sośnica K. and Bloßfeld M., 2019. Laser geodetic satellites: a high-accuracy scientific tool. J. Geodesy, DOI: https://doi.org/10.1007/s00190-019-01228-y (in print).

    Google Scholar 

  • Ray R.D., 2013. Precise comparisons of bottom-pressure and altimetric ocean tides. J. Geophys. Res.-Oceans, 118, 4570–4584.

    Article  Google Scholar 

  • Ray R.D. and Ponte R.M., 2003. Barometric tides from ECMWF operational analyses. Ann. Geophys., 21, 1897–1910.

    Article  Google Scholar 

  • Ray R.D., Bettadpur S., Eanes R.J. and Schrama E.J.O., 1995. Geometrical determination of the Love number h2 at four tidal frequencies. Geophys. Res. Lett., 22, 2175–2178.

    Article  Google Scholar 

  • Rutkowska M. and Jagoda M., 2010. Estimation of the elastic Earth parameters (h2, l2) using SLR data. Adv. Space Res., 46, 859–871.

    Article  Google Scholar 

  • Rutkowska M. and Jagoda M., 2015. SLR technique used for description of the Earth elasticity. Artif. Satell., 50, 127–141.

    Article  Google Scholar 

  • Schillak S., 2004. Analysis of the process of the determination of station coordinates by satellite laser ranging based on results of the Borowiec SLR station in 1993.5–2000.5. Part 2: Determination of the station coordinates. Artif. Satell., 39, 265–287.

    Google Scholar 

  • Schillak S. and Wnuk E., 2003. The SLR stations coordinates determined from monthly arcs of Lageos-1 and Lageos-2 laser ranging in 1999–2001. Adv. Space Res., 31, 413–418.

    Article  Google Scholar 

  • Sośnica K., 2014. LAGEOS sensitivity to ocean tides. Acta Geophys., 63, 1181–1203.

    Article  Google Scholar 

  • Sośnica K., Thaller D., Jäggi A., Dach R. and Beutler G., 2012. Sensitivity of Lageos orbits to global gravity field models. Artif. Satell., 47, 47–65.

    Article  Google Scholar 

  • Tapley B.D., Flechtner F., Bettadpur S.V. and Watkins M.M. 2013. The status and future prospect for GRACE after the first decade. Abstract. American Geophysical Union Fall Meeting 2013, (http://abstractsearch.agu.org/meetings/2013/FM/G32A-01.html).

  • Teisseyre R. and Teisseyre B., 2002. Wawrzyniec Karol de Teisseyre: a pioneer in the study of “cryptotectonics”. Eos Trans. AGU, 83, 541–546.

    Article  Google Scholar 

  • Torrence M.H., Klosko S.M. and Christodoulidis D.C., 1984. The construction and testing of normal points at Goddard Space Flight Center. 5th International Workshop on Laser Ranging Instrumentation, Herstmonceux, U.K. Geodetic Institute, University of Bonn, Bonn, Germany, 506–511.

    Google Scholar 

  • Wilde-Piórko M., Świerczak M., Grad M. and Majdański M., 2010. Integrated seismic model of the crust and upper mantle of the Trans-European Suture Zone between the Precambrian craton and Phanerozoic terranes in Central Europe. Tectonophysics, 481, 108–115.

    Article  Google Scholar 

  • Wu B., Bibo P., Zhu Y. and Hsu H., 2001. Determination of Love numbers using Satellite Laser Ranging. J. Geod. Soc. Japan, 47, 174–180.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Marcin Jagoda.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Jagoda, M., Rutkowska, M. Determination of the local tidal parameters for the Borowiec station using Satellite Laser Ranging data. Stud Geophys Geod 63, 509–519 (2019). https://doi.org/10.1007/s11200-019-0726-5

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-019-0726-5

Keywords

Navigation