Skip to main content
Log in

Lithospheric strength of the Caroline Islands and its tectonic implications

  • Published:
Studia Geophysica et Geodaetica Aims and scope Submit manuscript

Abstract

The Caroline Islands are located in a broad zone near plate boundaries in southwestern Pacific. Accumulating evidence suggests that the hotspot origin alone cannot completely explain the formation of the Caroline Islands. To investigate the tectonic setting of their formation, we calculated the effective elastic thickness (Te) of the lithosphere beneath the Caroline Islands from an analysis of bathymetry and free-air gravity anomaly data by the admittance method. A synthetic model based on the actual bathymetry data of the Caroline Islands was developed for the finite window size biasing correction. The results show that the Te values of the Caroline Islands (4.5–11.5 km) are significantly lower than the Te expected for a normal oceanic lithosphere (23–50 km), and that the Te values can be approximated by the depth to the 150 ± 100°C isotherm. The low Te values indicate that the strength of the lithosphere beneath the Caroline Islands has been weakened by geological process. The thermal anomalies related to the Ontong Java Plateau and the South Pacific Isotopic and Thermal Anomaly, and the lithospheric fractures induced by interaction of plates are probable causes of the lithospheric strength reduction of the Caroline Islands.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  • Anonymous, 2003. Centenary Edition of the GEBCO Digital Atlas. British Oceanographic Data Centre, Liverpool, U.K. (https://www.gebco.net).

    Google Scholar 

  • Altis S., 1999. Origin and tectonic evolution of the Caroline Ridge and the Sorol Trough, western tropical Pacific, from admittance and a tectonic modeling analysis. Tectonophysics, 313, 271–292, DOI: 10.1016/S0040-1951(99)00204-8.

    Google Scholar 

  • Bird P., 2003. An updated digital model of plate boundaries. Geochem. Geophys. Geosyst., 4, 1027, DOI: 10.1029/2001GC000252.

    Google Scholar 

  • Burov E.B. and Diament M., 1995. The effective elastic thickness (Te) of continental lithosphere: What does it really mean? J. Geophys. Res.-Solid Earth, 100, 3905–3927, DOI: 10.1029/94JB02770.

    Google Scholar 

  • Calmant S., 1987. The elastic thickness of the lithosphere in the Pacific Ocean. Earth Planet. Sci. Lett., 85, 277–288, DOI: 10.1016/0012-821X(87)90038-0.

    Google Scholar 

  • Calmant S., Francheteau J. and Cazenave A., 1990. Elastic layer thickening with age of the oceanic lithosphere: a tool for prediction of the age of volcanoes or oceanic crust. Geophys. J. Int., 100, 59–67, DOI: 10.1111/j.1365-246X.1990.tb04567.x.

    Google Scholar 

  • Davis A.S., Pringle M.S., Pickthorn L.B.G., Clague D.A. and Schwab W.C., 1989. Petrology and age of alkalic lava from the Ratak Chain of the Marshall Islands. J. Geophys. Res.-Solid Earth, 94, 5757–5774, DOI: 10.1029/JB094iB05p05757.

    Google Scholar 

  • Divins D.L., 2003. Total Sediment Thickness of the World’s Oceans & Marginal Seas. NOAA National Geophysical Data Center, Boulder, CO (https://www.ngdc.noaa.gov/mgg/sedthick/)

    Google Scholar 

  • Dixon T.H., Batiza R., Futa K. and Martin D., 1984. Petrochemistry, age and isotopic composition of alkali basalts from Ponape Island, Western Pacific. Chem. Geol., 43, 1–28, DOI: 10.1016/0009-2541(84)90138-4.

    Google Scholar 

  • Dorman L.M. and Lewis B.T.R., 1970. Experimental isostasy: 1. Theory of the determination of the Earth's isostatic response to a concentrated load. J. Geophys. Res., 75, 3357–3365, DOI: 10.1029/JB075i017p03357.

    Google Scholar 

  • Fornari D.J., Weissel J.K., Perfit M.R. and Anderson R.N., 1979. Petrochemistry of the Sorol and Ayu Troughs: implications for crustal accretion at the northern and western boundaries of the Caroline plate. Earth Planet. Sci. Lett., 45, 1–15, DOI: 10.1016/0012-821X(79)90102-X.

    Google Scholar 

  • Gladczenko T.P., Coffin M.F. and Eldholm O., 1997. Crustal structure of the Ontong Java Plateau: Modeling of new gravity and existing seismic data. J. Geophys. Res.-Solid Earth, 102, 22711–22729, DOI: 10.1029/97JB01636.

    Google Scholar 

  • Hart S.R., 1984. A large-scale isotope anomaly in the Southern Hemisphere mantle. Nature, 309, 753–757, DOI: 10.1038/309753a0.

    Google Scholar 

  • Hegarty K.A. and Weissel J.K., 1988. Complexities in the development of the Caroline Plate region, Western Equatorial Pacific. In: Nairn A.E.M., Stehli F.G. and Uyeda S. (Eds), The Ocean Basins and Margins. Springer, Boston, MA, 277–301, DOI: 10.1007/ 978-1-4615-8041-6_6.

    Google Scholar 

  • Hegarty K.A., Weissel J.K. and Hayes D.E., 1983. Convergence at the Caroline-Pacific plate boundary: Collision and subduction. In: Hayes D.E. (Ed.), The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands, Part 2. Geophysical Monograph Series 27, 326–348. American Geophysical Union, Washington, D.C., DOI: 10.1029/GM027p0326.

    Google Scholar 

  • Hu M.Z., Li J.C., Jin T.Y., Xu X.Y. Xing L.L., Shen C.Y. and Li H., 2015. Three-dimensional estimate of the lithospheric effective elastic thickness of the Line ridge. Tectonophysics, 658, 61–73, DOI: 10.1016/j.tecto.2015.07.008.

    Google Scholar 

  • Ingle S. and Coffin M.F., 2004. Impact origin for the greater Ontong Java Plateau? Earth Planet. Sci. Lett., 218, 123–134, DOI: 10.1016/S0012-821X(03)00629-0.

    Google Scholar 

  • Jarrard R.D. and Clague D.A., 1977. Implications of pacific island and seamount ages for the origin of volcanic chains. Rev. Geophys., 15, 57–76, DOI: 10.1029/RG015i001p00057.

    Google Scholar 

  • Kalnins L.M. and Watts A.B., 2009. Spatial variations in effective elastic thickness in the Western Pacific Ocean and their implications for Mesozoic volcanism. Earth Planet. Sci. Lett., 286, 89–100, DOI: 10.1016/j.epsl.2009.06.018.

    Google Scholar 

  • Keating B.H., Mattey D.P., Helsley C.E., Naughton J.J. and Epp D., 1984a. Evidence for a hot spot origin of the Caroline Islands. J. Geophys. Res., 89, 9937–9948, DOI: 10.1029/JB089iB12p09937.

    Google Scholar 

  • Keating B.H., Mattey D.P., Naughton J. and Helsley C.E., 1984b. Age and origin of Truk Atoll, eastern Caroline Islands: Geochemical, radiometric-age, and paleomagnetic evidence. Geol. Soc. Am. Bull., 95, 350–356, DOI: 10.1130/0016-7606(1984)95<350:AAOOTA>2.0.CO;2.

    Google Scholar 

  • Koppers A.A.P., Staudigel H., Pringle M.S. and Wijbrans J.R., 2003. Short-lived and discontinuous intraplate volcanism in the South Pacific: Hot spots or extensional volcanism? Geochem. Geophys. Geosyst., 4, 429–432, DOI: 10.1029/2003GC000533.

    Google Scholar 

  • Kroenke L.W., Wessel P. and Sterling A., 2004. Motion of the Ontong Java Plateau in the hot-spot frame of reference: 122 Ma-present. Geol. Soc. London Spec. Publ., 229, 9–20, DOI: 10.1144/GSL.SP.2004.229.01.02.

    Google Scholar 

  • Laske G., Masters G., Ma Z. and Pasyanos M., 2013. Update on CRUST1.0 - a 1-degree global model of Earth’s crust. Geophys. Res. Abs., 15, EGU2013–2658.

    Google Scholar 

  • Lee S.M., 2004. Deformation from the convergence of oceanic lithosphere into Yap trench and its implications for early-stage subduction. J. Geodyn., 37, 83–102, DOI: 10.1016/j.jog.2003.10.003.

    Google Scholar 

  • Lincoln J.M., Pringle M.S. and Premoli S.I., 1993. Early and late cretaceous volcanism and reefbuilding in the Marshall Islands. In: Pringle M.S., Sager W.W., Sliter W.V. and Stein S. (Eds), The Mesozoic Pacific: Geology, Tectonics, and Volcanism. Geophysical Monograph 77, American Geophysical Union, Washington, D.C., 279–305, DOI: 10.1029/GM077p0279.

    Google Scholar 

  • Lynch M.A., 1999. Linear ridge groups: Evidence for tensional cracking in the Pacific Plate. J. Geophys. Res.-Solid Earth, 104, 29321–29333, DOI: 10.1029/1999JB900241.

    Google Scholar 

  • Mahoney J.J., Storey M., Duncan R.A., Spencer K.J. and Pringle M., 1993. Geochemistry and age of the Ontong Java Plateau. In: Pringle M.S., Sager W.W., Sliter W.V. and Stein S. (Eds), The Mesozoic Pacific: Geology, Tectonics, and Volcanism. Geophysical Monograph 77, American Geophysical Union, Washington, D.C., 233–261, DOI: 10.1029/GM077p0233.

    Google Scholar 

  • Mattey D.P., 1982. The minor and trace element geochemistry of volcanic rocks from Truk, Ponape and Kusaie, Eastern Caroline Islands: the evolution of a young hot spot trace across old Pacific Ocean crust. Contrib. Mineral. Petrol., 80, 1–13, DOI: 10.1007/BF00376730.

    Google Scholar 

  • Mcdougall I. and Duncan R.A., 1980. Linear volcanic chains - recording plate motions? Tectonophysics, 63, 275–295, DOI: 10.1016/0040-1951(80)90117-1.

    Google Scholar 

  • McKenzie D. and Bowin C., 1976. The relationship between bathymetry and gravity in the Atlantic Ocean. J. Geophys. Res., 81, 1903–1915, DOI: 10.1029/JB081i011p01903.

    Google Scholar 

  • McNutt M.K., 1979. Compensation of oceanic topography: An application of the response function technique to the Surveyor area. J. Geophys. Res., 84, 7589–7598, DOI: 10.1029/JB084iB13p07589.

    Google Scholar 

  • McNutt M.K. and Fischer K.M., 1987. The South Pacific Superswell. In: Keating B.H., Fryer P., Batiza R. and Boehlert G.W. (Eds), Seamounts, Islands, and Atolls. Geophysical Monograph 43. American Geophysical Union, Washington, D.C., 25–34, DOI: 10.1029/GM043p0025.

    Google Scholar 

  • Menard H.W. and McNutt M.K., 1982. Evidence for and consequences of thermal rejuvenation. J. Geophys. Res.., 87, 8570–8580, DOI: 10.1029/JB087iB10p08570.

    Google Scholar 

  • Müller R.D., Sdrolias M., Gaina C. and Roest R.W., 2008. Age, spreading rates, and spreading asymmetry of the world’s ocean crust. Geochem. Geophys. Geosyst., 9, Q04006, DOI: 10.1029/2007GC001743.

    Google Scholar 

  • Nakanishi M. and Winterer E.L., 1998. Tectonic history of the Pacific-Farallon-Phoenix triple junction from Late Jurassic to Early Cretaceous: An abandoned Mesozoic spreading system in the Central Pacific Basin. J. Geophys. Res.-Solid Earth, 103, 12453–12468, DOI: 10.1029/98JB00754.

    Google Scholar 

  • Natland J.H. and Winterer E.L., 2005. Fissure control on volcanic action in the Pacific. Spec. Pap. Geol. Soc. Amer., 388, 687–710, DOI: 10.1130/0-8137-2388-4.687.

    Google Scholar 

  • Neal C.R., Mahoney J.J., Kroenke L.W., Duncan R.A. and Petterson M.G., 1997. The Ontong Java Plateau. In: Mahoney J.J. and Coffin M.F. (Eds), Large Igneous Provinces: Continental, Oceanic, and Planetary Flood Volcanism. Geophysical Monograph 100. American Geophysical Union, Washington, D.C., 183–216, DOI: 10.1029/GM100p0183.

    Google Scholar 

  • Parker R.L., 1972. The rapid calculation of potential anomalies. Geophys. J. Int., 31, 447–455, DOI: 10.1111/j.1365-246X.1973.tb06513.x.

    Google Scholar 

  • Parsons B. and Sclater J.G., 1977. Analysis of variation of ocean-floor bathymetry and heat-flow with age. J. Geophys. Res., 82, 803–827, DOI: 10.1029/JB082i005p00803.

    Google Scholar 

  • Pérez-Gussinyé M., Lowry A.R., Watts A.B. and Velicogna, I., 2004. On the recovery of effective elastic thickness using spectral methods: Examples from synthetic data and from the Fennoscandian Shield. J. Geophys. Res.-Solid Earth, 109, 235–243, DOI: 10.1029/2003JB002788.

    Google Scholar 

  • Pérez-Gussinyé M., Swain C.J., Kirby J.F. and Lowry A.R., 2009. Spatial variations of the effective elastic thickness, Te, using multitaper spectral estimation and wavelet methods: Examples from synthetic data and application to South America. Geochem. Geophys. Geosyst., 10, 2415–2440, DOI: 10.1029/2008GC002229.

    Google Scholar 

  • Rehman H.U., Nakaya H. and Kawai K., 2013. Geological origin of the volcanic islands of the Caroline Group in the Federated States of Micronesia, Western Pacific. South Pacific Study, 33, 101–118.

    Google Scholar 

  • Richards M.A., Jones D.L., Duncan R.A. and Depaolo D.J., 1991. A mantle plume initiation model for the Wrangellia Flood Basalt and other oceanic plateaus. Science, 254, 263–267, DOI: 10.1126/science.254.5029.263.

    Google Scholar 

  • Sandwell D.T., Müller R.D., Smith W.H.F., Garcia E. and Francis R., 2014. New global marine gravity model from CryoSat-2 and Jason-1 reveals buried tectonic structure. Science, 346, 65–67, DOI: 10.1126/science.1258213.

    Google Scholar 

  • Smith W.H.F., Staudigel H., Watts A.B. and Pringle M.S., 1989. The Magellan Seamounts: Early Cretaceous record of the South Pacific isotopic and thermal anomaly. J. Geophys. Res.-Solid Earth Planets, 94, 10501–10523, DOI: 10.1029/JB094iB08p10501.

    Google Scholar 

  • Smith W.H.F. and Sandwell D.T., 1994. Bathymetric prediction from dense satellite altimetry and sparse shipboard bathymetry. J. Geophys. Res.-Solid Earth, 99, 21803–21824, DOI: 10.1029/94JB00988.

    Google Scholar 

  • Staudigel H., Park K.H., Pringle M., Rubenstone J.L., Smith W.H.F. and Zindler A., 1991. The longevity of the South Pacific isotopic and thermal anomaly. Earth Planet. Sci. Lett., 102, 24–44, DOI: 10.1016/0012-821X(91)90015-A.

    Google Scholar 

  • Stern R.J., 2004. Subduction initiation: spontaneous and induced. Earth Planet. Sci. Lett., 226, 275–292, DOI: 10.1016/j.epsl.2004.08.007.

    Google Scholar 

  • Tarduno J.A., Sliter W.V., Kroenke L., Leckie M., Mayer H., Mahoney J. and Musgrave R., 1991. Rapid formation of Ontong Java Plateau by Aptian mantle plume volcanism. Science, 254, 399–403, DOI: 10.1126/science.254.5030.399.

    Google Scholar 

  • Taylor B., 2006. The single largest oceanic plateau: Ontong Java-Manihiki-Hikurangi. Earth Planet. Sci. Lett., 241, 372–380, DOI: 10.1016/j.epsl.2005.11.049.

    Google Scholar 

  • Tejada M.L.G., Mahoney J.J., Duncan R.A. and Hawkins M.P., 1996. Age and geochemistry of basement and alkalic rocks of Malaita and Santa Isabel, Solomon Islands, southern margin of Ontong Java Plateau. J. Petrol., 37, 361-394, DOI: 10.1093/petrology/37.2.361.

    Google Scholar 

  • Walcott R.I., 1970. Flexural rigidity, thickness, and viscosity of the lithosphere. J. Geophys. Res., 75, 3941–3954., DOI: 10.1029/JB075i020p03941.

    Google Scholar 

  • Watts A.B., 1978. An analysis of isostasy in the world’s oceans: 1. Hawaiian-Emperor Seamount chain. J. Geophys. Res., 83, 5989–6004, DOI: 10.1029/JB083iB12p05989.

    Google Scholar 

  • Watts A.B., Bodine J.H. and Ribe N.M., 1980. Observations of flexure and the geological evolution of the Pacific Ocean basin. Nature, 283, 532–537, DOI: 10.1038/283532a0.

    Google Scholar 

  • Watts A.B., Brink U.S.T., Buhl P. and Brocher T.M., 1985. A multichannel seismic study of lithospheric flexure across the Hawaiian-Emperor Seamount chain. Nature, 315, 105–111, DOI: 10.1038/315105a0.

    Google Scholar 

  • Watts A.B., 2001. Isostasy and Flexure of the Lithosphere. Cambridge University Press, Cambridge, U.K.

    Google Scholar 

  • Watts A.B., Sandwell D.T., Smith W.H.F. and Wessel P., 2006. Global gravity, bathymetry, and the distribution of submarine volcanism through space and time. J. Geophys. Res.-Solid Earth, 111, 137–145, DOI: 10.1029/2005JB004083.

    Google Scholar 

  • Watts A.B. and Zhong S., 2010. Observations of flexure and the rheology of oceanic lithosphere. Geophys. J. Int., 142, 855–875, DOI: 10.1046/j.1365-246X.2000.00189.x.

    Google Scholar 

  • Weissel J.K. and Anderson R.N., 1978. Is there a Caroline Plate? Earth Planet. Sci. Lett., 41, 143–158, DOI: 10.1016/0012-821X(78)90004-3.

    Google Scholar 

  • Wessel P. and Kroenke L.W., 2000. Ontong Java Plateau and late Neogene changes in Pacific plate motion. J. Geophys. Res.-Solid Earth, 105, 28255–28278, DOI: 10.1029/2000JB900290.

    Google Scholar 

  • Wessel P. and Kroenke L.W., 2008. Pacific absolute plate motion since 145 Ma: An assessment of the fixed hot spot hypothesis. J. Geophys. Res.-Solid Earth, 113, 3043–3061, DOI: 10.1029/2007JB005499.

    Google Scholar 

  • Wessel P. and Smith W.H.F., 2013. New version of the generic mapping tools. Eos Trans. AGU, 76, 329–329, DOI: 10.1029/95EO00198.

    Google Scholar 

Download references

Acknowledgments

This research is funded by the National Natural Science Foundation of China (Grant No. 41541027). Special thanks to Dr. Jiansheng Wu and Yonghui Zhao at Tongji University for their helpful suggestions. Some figures were drawn with the General Mapping Tools (Wessel and Smith, 2013).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mingming Wang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Wang, M. Lithospheric strength of the Caroline Islands and its tectonic implications. Stud Geophys Geod 63, 520–537 (2019). https://doi.org/10.1007/s11200-019-0732-7

Download citation

  • Received:

  • Revised:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s11200-019-0732-7

Keywords

Navigation